Self Studies

Engineering Mathematics Test 2

Result Self Studies

Engineering Mathematics Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33
    In the Laurent series expression of \(f\left( z \right) = \frac{1}{{\left( {z - 1} \right)\left( {z - 2} \right)}}\) valid for 0 < |z - 1|< 1, the co-efficient of \(\frac{1}{{\left( {z - 1} \right)}}\;is\)
    Solution

    Concept:

    Laurentz Series is obtained by the arrangement and manipulation of standard series or expansions, i.e.

    (1 - x)-1 = 1 + x + x2 + x3 + …… |x| < 1

    (1 + x)-1 = 1 – x + x2 – x3 + ….. |x| < 1

    (1 - x)-2 = 1 + 2x + 3x2 + ….. |x| < 1

    (1 + x)-2 1 – 2x + 3x2 – 4x2 + …. |x| < 1

    Observe that in all the expansions; |x| should be less than 1.

     ∴ We need to manipulate the variable to satisfy the above condition.

    Calculation:

    Given:

    \(f\left( z \right) = \frac{1}{{\left( {z - 1} \right)\left( {z - 2} \right)}}\)

    \(= \frac{1}{{z - 2}} - \frac{1}{{z - 1}}\)

    \(= \frac{1}{{\left( {z - 1 - 1} \right)}} - \frac{1}{{\left( {z - 1} \right)}}\)

    \(= \frac{{ - 1}}{{\left[ {1 - \left( {z - 1} \right)} \right]}} - \frac{1}{{\left( {z - 1} \right)}}\)

    = -1 [1 - (z - 1)]-1 - [z - 1]-1

    = -[z - 1]-1 - [1 + (z - 1) + (z - 1)2 + (z - 1)3 +…]

    Co-efficient of \(\frac{1}{{z - 1}}\) is -1
  • Question 2
    2 / -0.33
    The function f(z) = |z|2 is:
    Solution

    The complex derivative of a function f at a point z0 is defined as the limit

    \(f'\left( {{z_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{z_0} + h} \right) - f\left( {{z_0}} \right)}}{h}\) whenever the limit exists.

    f(z) = |z|2

    At z = 0,

    \(\mathop {\lim }\limits_{h \to 0} \frac{{{{\left| h \right|}^2}}}{h} = \mathop {\lim }\limits_{\left( {{h_1},{h_2}} \right) \to 0} \frac{{h_1^2 + h_2^2}}{{{h_1} + i{h_2}}} = \mathop {\lim }\limits_{\left( {{h_1},{h_2}} \right) \to 0} \frac{{h_1^2 + h_2^2}}{{h_1^2 + h_2^2}}\left( {{h_1} - i{h_2}} \right) = 0\)

    (We have used the important fact that |z|2 = zz̅)

    Hence f(z) is differentiable at z = 0.

    At z ≠ 0,

    \(\mathop {\lim }\limits_{h \to 0} \frac{{{{\left| {z + h} \right|}^2} - {{\left| z \right|}^2}}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{z\bar h + \bar zh}}{h}\)

    The above limit does not exist for z ≠ 0 as \(\mathop {\lim }\limits_{h \to 0} \frac{{\bar h}}{h}\) does not exist.

    Hence f(z) is not differentiable at z ≠ 0.

    The function f(z) = |z|2 is differentiable only at the origin.
  • Question 3
    2 / -0.33

    Consider the matrix \(A = \left[ {\begin{array}{*{20}{c}} x&0&0\\ 0&y&{ - 1}\\ 0&1&{ - 2} \end{array}} \right]\)

    Which of the following conditions must satisfy to get all the Eigenvalues of A as negative.

    Solution

    Concept:

    If A is any square matrix of order n, we can form the matrix [A – λI], where I is the nth order unit matrix. The determinant of this matrix equated to zero i.e. |A – λI| = 0 is called the characteristic equation of A.

    The roots of the characteristic equation are called Eigenvalues or latent roots or characteristic roots of matrix A.

    Properties of Eigenvalues:

    The sum of Eigenvalues of a matrix A is equal to the trace of that matrix A

    The product of Eigenvalues of a matrix A is equal to the determinant of that matrix A

    Calculation:

    Characteristic equation: |A – λI| = 0

    \(\left[ {A - \lambda I} \right] = \left[ {\begin{array}{*{20}{c}} x&0&0\\ 0&y&{ - 1}\\ 0&1&{ - 2} \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} \lambda &0&0\\ 0&\lambda &0\\ 0&0&\lambda \end{array}} \right]\)

    \( = \left[ {\begin{array}{*{20}{c}} {x - \lambda }&0&0\\ 0&{y - \lambda }&{ - 1}\\ 0&1&{ - 2 - \lambda } \end{array}} \right]\)

    \(\left| {\begin{array}{*{20}{c}} {x - \lambda }&0&0\\ 0&{\left( {y - \lambda } \right)}&{ - 1}\\ 0&1&{ - 2 - \lambda } \end{array}} \right| = 0\)

    ⇒ (x - λ) [(y - λ)(-λ - 2) + 1] = 0

    ⇒ (λ - x) [(λ - y)(λ + 2) + 1] = 0

    To get all the negative Eigen values

    x < 0 and the roots of [(λ - y)(λ + 2) + 1] must be negative.

    (λ - y)(λ + 2) + 1 = 0

    λ2 – yλ + 2λ – 2y + 1 = 0

    ⇒ λ2 + λ(2 - y) + (1 – 2y) = 0

    To get the negative roots,

    2 – y > 0 and 1 – 2y > 0

    \( \Rightarrow y < 2\;and\;y < \frac{1}{2}\)

    \( \Rightarrow y < \frac{1}{2}\)

  • Question 4
    2 / -0.33

    A 3 by 3 matrix B is known to have eigenvalues 0, 1, 2.

    Which of the following can be found using the above information?
    Solution

    Eigen values of B = 0, 1, 2

    Determinant of B = product of Eigen values = 0

    As determinant is zero, the rank of the matrix B is less than or equal to 2.

    As there are two unique Eigen values other than zero, the rank of matrix B is 2.

    From the properties of determinant,

    Det (BT B) = Det (BT) ⋅ Det (B) = 0

    Eigen values of B2 = 0, 12, 22 = 0, 1, 4

    Eigen values of B2 + I = 1, 2, 5

    Eigen values of (B2 + I)-1 \(= 1,\;\frac{1}{2},\frac{1}{5}\)

    We can’t find the Eigen values of BT B with the given information.

  • Question 5
    2 / -0.33
    If \(x = \mathop \sum \limits_{k = 1}^\infty {a_k}\sin kx\), for -π ≤ x ≤ π, the value of a2 is ______
    Solution

    f(x) = x

    f(x) is an odd function.

    So, only bn exists in the Fourier series expansion.

    For -π ≤ x ≤ π,

    \({b_n} = \frac{2}{\pi }\mathop \smallint \limits_0^\pi x\sin \left( {\frac{{n\pi }}{\pi }x} \right)dx\) 

    \( = \frac{2}{\pi }\mathop \smallint \limits_0^\pi x\sin nx\;\;dx\) 

    \( = \frac{2}{\pi }\left[ {\left[ {\frac{x}{n}\left( { - \cos nx} \right)} \right]_0^\pi - \frac{1}{n}\mathop \smallint \limits_0^\pi - \cos nx} \right]\) 

    \( = \frac{2}{\pi }\left[ {\frac{{ - \pi \;}}{n}\cos n\pi + \frac{1}{{{n^2}}}\left[ {\sin nx} \right]_0^\pi } \right]\) 

    \( = \frac{2}{\pi }\left[ {\frac{{ - \pi }}{n}{{\left( { - 1} \right)}^n} + \frac{1}{{{n^2}}}\left( 0 \right)} \right]\) 

    \( = \frac{{ - 2}}{n}{\left( { - 1} \right)^n}\) 

    \(f\left( x \right) = x = \mathop \sum \limits_{k = 1}^\infty \frac{{ - 2}}{n}{\left( { - 1} \right)^n}\sin kx\) 

    \({a_2} = \frac{{ - 2}}{2}{\left( { - 1} \right)^2} = - 1\)  

  • Question 6
    2 / -0.33
    If  \(u = \log \frac{{{x^2}}}{y},\;then\;\;x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}}\;\) is equal to
    Solution

    \(u = \log \frac{{{x^2}}}{y}\)

    \(\frac{{\partial u}}{{\partial x}} = \frac{1}{{{x^2}/y}}.\frac{{2x}}{y} = \frac{2}{x} \Rightarrow x\frac{{\partial u}}{{\partial x}} = 2\)

    \(\frac{{\partial u}}{{\partial x}} = \frac{1}{{{x^2}/y}}.\frac{{ - {x^2}}}{{{y^2}}} = \frac{{ - 1}}{y} \Rightarrow y\frac{{\partial u}}{{\partial x}} = - 1\)

    Now,

    \(x\frac{{\partial u}}{{\partial x}} + y\frac{{\partial u}}{{\partial y}} = 2 - 1 = 1\)
  • Question 7
    2 / -0.33
    Let the random variable X have the density f(x) = kx if 0 ≤ x ≤ 3. Find P(|X − 1.8| < 0.6) up to two decimal places.
    Solution

    For any density function,

    \(\mathop \smallint \limits_{ - \infty }^\infty f\left( x \right)dx = 1\)

    \( \Rightarrow \mathop \smallint \limits_0^3 kxdx = 1\)

    \( \Rightarrow k = \frac{2}{9}\)

    P(|X − 1.8| < 0.6) = P(1.2 < X < 2.4)

    \( = \mathop \smallint \limits_{1.2}^{2.4} \frac{2}{9}xdx = \frac{1}{9}\left( {{{2.4}^2} - {{1.2}^2}} \right) = 0.48\)

  • Question 8
    2 / -0.33
    A machine produces items of which 1% at random are defective. How many items can be packed in a box while keeping the chance of one or more defectives in the box to be no more than 0.5?
    Solution

    Let X be the number of defectives when n items are packed into a box.

    P(X = 0) = (0.99)n

    P(X ≥ 1) = 1 – P(X = 0) = 1 − (0.99)n

    P(X ≥ 1) < 0.5

    ⇒ 1 − (0.99)n < 0.5

    ⇒ n < log 0.5/ log 0.99 = 68.97

    ⇒ n = 68
  • Question 9
    2 / -0.33
    If the potential function is log (x2 + y2) then the function is
    Solution

    Given that,

    \(\phi \left( {x,y} \right) = log\left( {{x^2} + {y^2}} \right)\)

    \(f\left( z \right) = \phi \left( {x,y} \right) + i\psi \left( {x\;y} \right)\)

    Where \(\phi \left( {x,y} \right)\) is potential function

    \(\psi \left( {x,y} \right)\) is complex potential function

    \(f'\left( z \right) = {\phi _x} + i{\psi _x}\)

    By CR equations, \({\phi _y} = - {\psi _x}\)

    \(\phi \left( {x,\;y} \right) = log\;\left( {{x^2} + {y^2}} \right)\)

    \({\phi _x} = \frac{1}{{\left( {{x^2} + {y^2}} \right)}}\left( {2x} \right),\;{\phi _y} = \frac{{2y}}{{\left( {{x^2} + {y^2}} \right)}}\)

    \( \Rightarrow f'\left( z \right) = \left( {\frac{{2x}}{{{x^2} + {y^2}}}} \right) - i\left( {\frac{{2y}}{{{x^2} + {y^2}}}} \right)\)

    By Milne-Thomson’s method, we express \(\frac{{df}}{{dz}}\) in terms of z, on replacing x by z and y by 0.

    \( \Rightarrow f'\left( z \right) = \frac{{2z}}{{{z^2}}} - (i\times 0)\)

    \( \Rightarrow f'(z) = \frac{2}{z}\)

    \( \Rightarrow f\left( z \right) = \smallint \frac{2}{z}dz + c\)

    \( \Rightarrow f\left( z \right) = 2\log z + c\)

  • Question 10
    2 / -0.33

    The solution of the differential equation

    t2y’ – y2 – yt = 0, t > 0 is

    Solution

    Given differential equation is,

    t2 y’ – y2 – yt = 0

    Dividing the above equation by t2 gives,

    \(y' = \frac{{{y^2}}}{{{t^2}}} + \frac{y}{t}\)

    \( \Rightarrow y' = {\left( {\frac{y}{t}} \right)^2} + \frac{y}{t}\)

    Put,

    ⇒ y = tz

    ⇒ y’ = z + yz’

    Now the differential equation becomes

    z + tz’ = z2 + z

    \( \Rightarrow t\frac{{dz}}{{dt}} = {z^2}\)

    \( \Rightarrow \frac{{dz}}{{{z^2}}} = \frac{{dt}}{t}\)

    \( \Rightarrow \smallint \frac{{dz}}{{{z^2}}} = \smallint \frac{{dt}}{t} + C\)

    \( \Rightarrow \frac{{ - 1}}{2} = \ln t + C\)

    \(z = \frac{{ - 1}}{{\ln t + C}}\)

    \( \Rightarrow y = \frac{{ - t}}{{\ln t + C}}\)

  • Question 11
    2 / -0.33

    Consider the following initial value problem

    y’’ + 3y’ = e2t, y(0) = 1, y’(0) = 0

    The value of y(1) is __________ (upto two decimal places).

    Solution

    y’’ + 3y’ = e2t

    AE: D2 + 3D = 0

    ⇒ (D + 3) D = 0

    ⇒ D = 0, -3

    CF is y = Ae-3t + B

    \(PI = \frac{1}{{D\left( {D + 3} \right)}}{e^{2t}} = \frac{1}{{2\left( 5 \right)}}{e^{2t}} = \frac{{{e^{2t}}}}{{10}}\)

    The solution is,

    \(y\left( t \right) = A{e^{ - 3t}} + B + \frac{{{e^{2t}}}}{{10}}\)

    y(0) = 1

    \( \Rightarrow 1 = A + B + \frac{1}{{10}} \Rightarrow A + B = \frac{9}{{10}}\)

    \(y'\left( t \right) = - 3A{e^{ - 3t}} + \frac{2}{{10}}{e^{2t}}\)

    y'(0) = 0

    \( \Rightarrow 0 = - 3A + \frac{2}{{10}}\)

    \(\Rightarrow A = \frac{1}{{15}}\)

    \( \Rightarrow B = \frac{9}{{10}} - \frac{1}{{15}} = \frac{5}{6}\)

    \(y\left( t \right) = \frac{1}{{15}}{e^{ - 3t}} + \frac{1}{{10}}{e^{2t}} + \frac{5}{6}\)

    At t = 1,

    \(y\left( 1 \right) = \frac{1}{{15}}{e^{ - 3}} + \frac{1}{{10}}{e^2} + \frac{5}{6}\)

    ⇒ y(1) = 1.57

  • Question 12
    2 / -0.33
    Let \(I = \mathop \smallint \limits_C^\; \frac{{f\left( z \right)}}{{\left( {z - 1} \right)\left( {z - 2} \right)}}dz,\) where \(f\left( z \right) = \sin \frac{{\pi z}}{2} + \cos \frac{{\pi z}}{2}\) and C is the curve |z| = 3 oriented anti-clockwise. Then the value of I is
    Solution

    \(I = \mathop \smallint \limits_C^\; \frac{{f\left( z \right)}}{{\left( {z - 1} \right)\left( {z - 2} \right)}}dz\)

    \(f\left( z \right) = \sin \frac{{\pi z}}{2} + \cos \frac{{\pi z}}{2}\)

    According to Cauchy’s residue theorem,

    \(I = \mathop \smallint \limits_C^\; \frac{{f\left( z \right)}}{{\left( {z - 1} \right)\left( {z - 2} \right)}} = 2\pi i\;\left[ {sum\;of\;residues} \right]\)

    Poles are, z = 1 and z = 2.

    Residue at z = 1,

    \(\mathop {{\rm{lt}}}\limits_{z \to 1} \frac{{f\left( z \right)}}{{\left( {z - 2} \right)}} = \mathop {{\rm{lt}}}\limits_{z \to 1} \frac{{\sin \frac{{\pi z}}{2} + \cos \frac{{\pi z}}{2}}}{{\left( {z - 2} \right)}}\)

    = -1

    Residue at z = 2

    \(\mathop {{\rm{lt}}}\limits_{z \to 2} \frac{{f\left( z \right)}}{{\left( {z - 1} \right)}} = \mathop {{\rm{lt}}}\limits_{z \to 2} \frac{{\sin \frac{{\pi z}}{2} + \cos \frac{{\pi z}}{2}}}{{\left( {z - 1} \right)}}\)

    = -1

    I = 2πi [-1 - 1] = -4πi
  • Question 13
    2 / -0.33
    Let X have the density f(x) = 2x if 0 ≤ x ≤ 1 and f(x) = 0 otherwise. The mean and variance of the random variable Y = −2X + 3 respectively are
    Solution

    The expected value of X is,

    \(E\left( X \right) = \mathop \smallint \limits_{ - \infty }^\infty xf\left( x \right)dx = \mathop \smallint \limits_0^1 2{x^2}dx = \frac{2}{3}\)

    The expected value of X2 is,

    \(E\left( {{X^2}} \right) = \mathop \smallint \limits_{ - \infty }^\infty {x^2}f\left( x \right)dx = \mathop \smallint \limits_0^1 2{x^3}dx = \frac{1}{2}\)

    The variance of X is,

    \(Var\left( X \right) = E\left( X \right) - {\left( {E\left( X \right)} \right)^2} = \frac{1}{2} - {\left( {\frac{2}{3}} \right)^2} = \frac{1}{{18}}\)

    Y = −2X + 3

    The expectation of Y is,

    \(E\left( Y \right) = - 2E\left( X \right) + 3 = - 2 \times \frac{2}{3} + 3 = \frac{5}{3}\)

    \(Var\left( Y \right) = {\left( { - 2} \right)^2}Var\left( X \right) = 4 \times \frac{1}{{18}} = \frac{2}{9}\)

  • Question 14
    2 / -0.33

    Two events A and B are such that P(A) = 0.5, P(B) = 0.3 and P(A ∩ B) = 0.1. Which of the following is/are true?

    Solution

    P(A) = 0.5, P(B) = 0.3 and P(A ∩ B) = 0.1

    P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 0.7

    \(P\left( {A{\rm{|}}B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{1}{3}\)

    \(P\left( {B{\rm{|}}A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{1}{5}\)

    \(P\left( {A{\rm{|}}A \cup B} \right) = \frac{{P\left( A \right)}}{{{\rm{P}}\left( {{\rm{A}} \cup {\rm{B}}} \right)}} = \frac{5}{7}\)

    P(A|A ∩ B) = P(A ∩ B)/P(A ∩ B) = 1

    \(P\left( {A \cap B{\rm{|}}A \cup B} \right) = \frac{{P\left( {A \cap B} \right)}}{{{\rm{P}}({\rm{A}} \cup {\rm{B}}}} = \frac{1}{7}\)

  • Question 15
    2 / -0.33

    The first two columns of an orthogonal 3 × 3 matrix are \({V_1} = \left[ {\begin{array}{*{20}{c}}{\cos x\cos y}\\{\sin x}\\{\cos x\sin y}\end{array}} \right],\;{V_2} = \left[ {\begin{array}{*{20}{c}}{ - \sin y}\\0\\{\cos y}\end{array}} \right]\)

    Which of the following represents the third column of this matrix.

    Solution

    V1, V2 are orthogonal vectors of unit length as shown below.

    V1t V2 = -cos x cos y sin y + cos x cos y sin y = 0

    ||V1||2 = cos2 x ⋅ cos2 y + cos2 x sin2 y + sin2 x

    = cos2 x + sin2 x = 1

    ||V2||2 = sin2 y + cos2 y = 1

    The third column is perpendicular to each of the first two columns, so it is parallel to

    \({V_3} = {V_1} \times {V_2} = \left[ {\begin{array}{*{20}{c}}{\cos x\cos y}\\{\sin x}\\{\cos x\sin y}\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}{ - \sin y}\\0\\{\cos y}\end{array}} \right]\)

    \(= \left[ {\begin{array}{*{20}{c}}{\sin x\cos y}\\{ - \cos x}\\{\sin x\sin y}\end{array}} \right]\)

    This is actually a unit vector itself, so the third column could be either V3 or –V3

    So, the third column will be

    \(\left[ {\begin{array}{*{20}{c}}{\sin x\cos y}\\{ - \cos x}\\{\sin x\sin y}\end{array}} \right],\left[ {\begin{array}{*{20}{c}}{ - \sin x\cos y}\\{\cos x}\\{ - \sin x\sin y}\end{array}} \right]\)

  • Question 16
    2 / -0.33

    Consider the matrix \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\)

    Which of the following are the Eigenvectors of the matrix (A3 + 5I)?

    Solution

    \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\)

    \(\left[ {A - \lambda I} \right] = \left[ {\begin{array}{*{20}{c}}{1 - \lambda }&{ - 1}&0\\{ - 1}&{2 - \lambda }&{ - 1}\\0&{ - 1}&{1 - \lambda }\end{array}} \right]\)

    |A - λI|= 0

    \( \Rightarrow \left| {\begin{array}{*{20}{c}}{1 - \lambda }&{ - 1}&0\\{ - 1}&{2 - \lambda }&{ - 1}\\0&{ - 1}&{1 - \lambda }\end{array}} \right| = 0\)

    ⇒ (1 - λ) (2 - λ) (1 - λ) – 2(1 - λ) = 0

    ⇒ (1 - λ) (- λ) (3 - λ) = 0

    ⇒ λ = 0, 1, 3

    Eigen values of A are = 0, 1, 3

    For λ1 = 0:

    A x1 = λ1x1

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = 0\)

    ⇒ x1 – x2 = 0, -x1 + 2x2 – x3 = 0, -x2 + x3 = 0

    ⇒ x1 = x2 = x3

    Eigen vector \(= \left[ {\begin{array}{*{20}{c}}K\\K\\K\end{array}} \right]\)

    For K = 1, \({x_1} = \left[ {\begin{array}{*{20}{c}}1\\1\\1\end{array}} \right]\)

    For λ2 = 1

    Ax2 = λ2x2

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right]\)

    ⇒ x1 – x2 = x1, -x1 + 2x2 – x3 = x2, -x2 + x3 = x3

    ⇒ -x1 = x3 and x2 = 0

    Eigen vector \(= \left[ {\begin{array}{*{20}{c}}K\\0\\{ - K}\end{array}} \right]\)

    For K = 1, \({x_2} = \left[ {\begin{array}{*{20}{c}}1\\0\\{ - 1}\end{array}} \right]\)

    For λ3 = 3

    Ax3 = λ3x3

    \( \Rightarrow \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 1}&2&{ - 1}\\0&{ - 1}&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\\{{x_3}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{3{x_1}}\\{3{x_2}}\\{3{x_3}}\end{array}} \right]\)

    ⇒ x1 – x2 = 3x1, -x1 + 2x2 – x3 = 3x2, -x2 + x3 = 3x3

    ⇒ x2 = -2x3, x1 = x3

    Eigen vector \( = \left[ {\begin{array}{*{20}{c}}K\\{ - 2K}\\K\end{array}} \right]\)

    For K = 1, \({x_3} = \left[ {\begin{array}{*{20}{c}}1\\{ - 2}\\1\end{array}} \right]\)

    The Eigen vectors of (A3 + 5I) are same as the Eigen vectors of A.

  • Question 17
    2 / -0.33

    Consider the following three systems of equations:

    Case a: x1 + x2 = 1, 2x1 – x2 = 0

    Case b: x1 + x2 = 1, 2x1 + 2x2 = 2

    Case c: x1 + x2 = 1, x1 + x2 = 0

    Which one of the following statements is true?
    Solution

    Concept:

    Consider the system of m linear equations

    a11 x1 + a12 x2 + … + a1n xn = b1

    a21 x1 + a22 x2 + … + a2n xn = b2

    am1 x1 + am2 x2 + … + amn xn = bm

    The above equations containing the n unknowns x1, x2, …, xn. To determine whether the above system of equations is consistent or not, we need to find the rank of following matrices.

    \(A=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & \ldots & {{a}_{1n}} \\ {{a}_{21}} & {{a}_{22}} & \ldots & {{a}_{2n}} \\ \ldots & \ldots & \ldots & \ldots \\ {{a}_{m1}} & {{a}_{m2}} & \ldots & {{a}_{mn}} \\ \end{matrix} \right]~and~\left[ A\text{ }\!\!|\!\!\text{ }B \right]=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & \ldots & {{a}_{1n}} & {{b}_{1}} \\ {{a}_{21}} & {{a}_{22}} & \ldots & {{a}_{2n}} & {{b}_{2}} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ {{a}_{m1}} & {{a}_{m2}} & \ldots & {{a}_{mn}} & {{b}_{m}} \\ \end{matrix} \right]\)

    A is the coefficient matrix and [A|B] is called as augmented matrix of the given system of equations.

    We can find consistency of the given system of equations as follows:

    (i) If the rank of matrix A is equal to rank of augmented matrix and it is equal to number of unknowns, then system is consistent and there is a unique solution.

    Rank of A = Rank of augmented matrix = n

    (ii) If the rank of matrix A is equal to rank of augmented matrix and it is less than the number of unknowns, then system is consistent and there are infinite number of solutions.

    Rank of A = Rank of augmented matrix < n

    (iii) If the rank of matrix A is not equal to rank of augmented matrix, then system is inconsistent, and it has no solution.

    Rank of A ≠ Rank of augmented matrix

    Calculation:

    Case a: x1 + x2 = 1, 2x1 – x2 = 0

    The given system of equations can be represented in a matrix form as shown below.

    \(A=\left[ \begin{matrix} 1 & 1 \\ 2 & -1 \\ \end{matrix} \right],~X=\left[ \begin{matrix} {{x}_{1}} \\ {{x}_{2}} \\ \end{matrix} \right],~B=\left[ \begin{matrix} 1 \\ 0 \\ \end{matrix} \right]\)

    The Augmented matrix can be written by

    \(\left[ A\text{ }\!\!|\!\!\text{ }B \right]=\left[ \begin{matrix} 1 & 1 \\ 2 & -1 \\ \end{matrix}\text{ }\!\!|\!\!\text{ }\begin{matrix} 1 \\ 0 \\ \end{matrix} \right]\)

    R2 → R2 – 2R1

    \(=\left[ \begin{matrix} 1 & 1 \\ 0 & -3 \\ \end{matrix}\text{ }\!\!|\!\!\text{ }\begin{matrix} 1 \\ -2 \\ \end{matrix} \right]\)

    Rank of A = Rank of augmented matrix = n

    So, it has unique solution.

    Case b: x1 + x2 = 1, 2x1 + 2x2 = 2

    The given system of equations can be represented in a matrix form as shown below.

    \(A=\left[ \begin{matrix} 1 & 1 \\ 2 & 2 \\ \end{matrix} \right],~X=\left[ \begin{matrix} {{x}_{1}} \\ {{x}_{2}} \\ \end{matrix} \right],~B=\left[ \begin{matrix} 1 \\ 2 \\ \end{matrix} \right]\)

    The Augmented matrix can be written by

    \(\left[ A\text{ }\!\!|\!\!\text{ }B \right]=\left[ \begin{matrix} 1 & 1 \\ 2 & 2 \\ \end{matrix}\text{ }\!\!|\!\!\text{ }\begin{matrix} 1 \\ 2 \\ \end{matrix} \right]\)

    R2 → R2 – 2R1

    \(=\left[ \begin{matrix} 1 & 1 \\ 0 & 0 \\ \end{matrix}\text{ }\!\!|\!\!\text{ }\begin{matrix} 1 \\ 0 \\ \end{matrix} \right]\)

    Rank of A = Rank of augmented matrix < n

    So, it has infinitely many solutions.

    Case c: x1 + x2 = 1, x1 + x2 = 0

    The given system of equations can be represented in a matrix form as shown below.

    \(A=\left[ \begin{matrix} 1 & 1 \\ 1 & 1 \\ \end{matrix} \right],~X=\left[ \begin{matrix} {{x}_{1}} \\ {{x}_{2}} \\ \end{matrix} \right],~B=\left[ \begin{matrix} 1 \\ 0 \\ \end{matrix} \right]\)

    The Augmented matrix can be written by

    \(\left[ A\text{ }\!\!|\!\!\text{ }B \right]=\left[ \begin{matrix} 1 & 1 \\ 1 & 1 \\ \end{matrix}\text{ }\!\!|\!\!\text{ }\begin{matrix} 1 \\ 0 \\ \end{matrix} \right]\)

    R2 → R2 – R1

    \(=\left[ \begin{matrix} 1 & 1 \\ 0 & 0 \\ \end{matrix}\text{ }\!\!|\!\!\text{ }\begin{matrix} 1 \\ -1 \\ \end{matrix} \right]\)

    Rank of A ≠ Rank of augmented matrix

    So, it has no solution.
  • Question 18
    2 / -0.33
    The value of the integral \(\displaystyle\int_0^{2\pi}\left(\dfrac{3}{9+\sin^2 \theta }\right)d\theta \) is
    Solution

    \(\mathop \smallint \limits_0^{2a} f\left( x \right)dx = \left\{ {\begin{array}{*{20}{c}}{2\mathop \smallint \limits_0^a f\left( x \right)dx,\;\;f\left( {2a - x} \right) = f\left( x \right)}\\{0,\;\;f\left( {2a - x} \right) = - f\left( x \right)}\end{array}} \right.\)

    From the property of integration as mentioned above, the given integral can be reduced to

    \( = 2\mathop \smallint \limits_0^\pi \left( {\frac{3}{{9 + {{\sin }^2}\theta }}} \right)d\theta \)

    \( = 4\mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\frac{3}{{9 + {{\sin }^2}\theta }}} \right)d\theta \)

    \( = 4\mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\frac{3}{{9 + \frac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta }}{{\sin }^2}\theta }}} \right)d\theta \)

    \( = 12\mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\frac{{{{\sec }^2}\theta }}{{9{{\sec }^2}\theta + {{\tan }^2}\theta }}} \right)d\theta \)

    \( = 12\mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\frac{{{{\sec }^2}\theta }}{{9\left( {1 + {{\tan }^2}\theta } \right) + {{\tan }^2}\theta }}} \right)d\theta \)

    \( = 12\mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\frac{{{{\sec }^2}\theta }}{{9 + 10{{\tan }^2}\theta }}} \right)d\theta \)

    Put tan θ = t

    ⇒ sec2θ dθ = dt

    \( = 12\mathop \smallint \limits_0^\infty \left( {\frac{1}{{9 + 10{t^2}}}} \right)dt\)

    \( = \frac{{12}}{{10}}\mathop \smallint \limits_0^\infty \left( {\frac{1}{{\frac{9}{{10}} + {t^2}}}} \right)dt\)

    \( = \frac{{12}}{{10}} \times \frac{1}{{\frac{3}{{\sqrt {10} }}}}\left[ {{{\tan }^{ - 1}}\left( {\frac{t}{{\frac{3}{{\sqrt {10} }}}}} \right)} \right]_0^\infty \)

    \( = \frac{4}{{\sqrt {10} }}\left[ {\frac{\pi }{2} - 0} \right] = \frac{{2\pi }}{{\sqrt {10} }}\)

  • Question 19
    2 / -0.33

    If \(f\left( {x,y} \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{xy\left( {{x^2} - {y^2}} \right)}}{{{x^2} + {y^2}}},\;\left( {x,y} \right) \ne \left( {0,\;0} \right)}\\{0,\;\left( {x,y} \right) = \left( {0,\;0} \right)}\end{array}} \right.\)

    The values of \(\frac{{{\partial ^2}f}}{{\partial x\partial y}}\) and \(\frac{{{\partial ^2}f}}{{\partial y\partial x}}\) at (0, 0) respectively are
    Solution

    \(\frac{{{\partial ^2}f}}{{\partial x\partial y}}\) at (0, 0) can be calculated as

    \({f_{xy}}\left( {0,\;0} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{{f_y}\left( {h,\;0} \right) - {f_y}\left( {0,\;0} \right)}}{h}\)

    \({f_y}\left( {0,\;0} \right) = \mathop {\lim }\limits_{k \to 0} \frac{{f\left( {0,\;k} \right) - f\left( {0,\;0} \right)}}{k} = 0\)

    \({f_y}\left( {h,\;0} \right) = \mathop {\lim }\limits_{k \to 0} \frac{{f\left( {h,\;k} \right) - f\left( {h,\;0} \right)}}{k}\)

    \(= \mathop {\lim }\limits_{k \to 0} \frac{{hk\left( {{h^2} - {k^2}} \right)}}{{k\left( {{h^2} + {k^2}} \right)}} = h\)

    \({f_{xy}}\left( {0,\;0} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{h - 0}}{h} = 1\)

    \(\frac{{{\partial ^2}f}}{{\partial y\partial x}}\) at (0, 0) can be calculated as

    \({f_{yx}}\left( {0,\;0} \right) = \mathop {\lim }\limits_{k \to 0} \frac{{{f_x}\left( {0,\;k} \right) - {f_x}\left( {0,\;0} \right)}}{k}\)

    \({f_x}\left( {0,\;0} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {h,\;0} \right) - f\left( {0,\;0} \right)}}{h} = 0\)

    \({f_x}\left( {0,\;k} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {h,\;k} \right) - f\left( {0,\;k} \right)}}{h}\)

    \(= \mathop {\lim }\limits_{h \to 0} \frac{{hk\left( {{h^2} - {k^2}} \right)}}{{k\left( {{h^2} + {k^2}} \right)}} = - k\)

    \({f_{yx}}\left( {0,\;0} \right) = \mathop {\lim }\limits_{k \to 0} \frac{{ - k - 0}}{k} = - 1\)
  • Question 20
    2 / -0.33

    Consider the initial value problem,

    y(4) = -sin t + cos t, y’’’(0) = 7, y’’(0) = y’(0) = -1, y(0) = 0. The value of y(π / 2) is ______ (upto two decimal places).

    Solution

    y(4) = -sin t + cos t

    \(\smallint {y^{\left( 4 \right)}}dy = \smallint \left( { - \sin t + \cos t} \right)dt + c\)

    ⇒ y’’’(t) = cos t + sin t + c

    y’’’(0) = 7 = 1 + 0 + c ⇒ c = 6

    y’’’(t) = cos t + sin t + 6

    \(\smallint y'''\left( t \right)dy = \smallint \left( {\cos t + \sin t + 6} \right)dt + c\)

    ⇒ y’’(t) = sin t – cos t + 6t + c

    y’’(0) = 0 – 1 + c = -1 ⇒ c = 0

    ⇒ y’’(t) = sin t – cos t + 6t

    \(\smallint y''\left( t \right)dy = \smallint \left( {\sin t - \cos t + 6t} \right)dt + c\)

    ⇒ y’(t) = -cos t – sin t + 3t2 + c

    y’(0) = -1 = -1 – 0 + c ⇒ c = 0

    ⇒ y’(t) = -cos t – sin t + 3t2

    \(\smallint y'\left( t \right)dy = \smallint \left( { - \cos t - \sin t + 3{t^2}} \right) + c\)

    ⇒ y(t) = -sin t + cos t + t3 + c

    y(0) = 0 = 1 + c ⇒ c = -1

    y(t) = -sin t + cos t + t3 – 1

    \(y\left( {\frac{\pi }{2}} \right) = - 1 + 0 + {\left( {\frac{\pi }{2}} \right)^3} - 1 = 1.876\)

  • Question 21
    2 / -0.33

    The solution of the initial value problem

    t2y’’ – 3ty’ + 4y = 0, t > 0 y(1) = -2, y’(1) = 1 is
    Solution

    t2y’’ – 3ty’ + 4y = 0

    ⇒ D(D - 1) y – 3Dy + 4y = 0

    ⇒ [D(D - 1) – 3D + 4] y = 0

    ⇒ [D2 – 4D + 4] y = 0

    D2 – 4D + 4 = 0

    ⇒ D = 2, 2

    Now, the solution is

    y = [c1 + c2x] e2x

    y = [c1 + c2 ln t] e2 ln t

    ⇒ y(t) = [c1 + c2 ln t] t2

    y(1) = -2

    ⇒ -2 = c1 (1) ⇒ c1 = -2

    y’(t) = [c1 + c2 ln t] (2t) + c2(t)

    y’(1) = 1

    ⇒ 1 = (-2)(2) + c2(1) ⇒ c2 = 5

    Now, the solution is

    y(t) = [-2 + 5 ln t] t2

  • Question 22
    2 / -0.33
    Solve \(2\frac{{{\partial ^2}z}}{{\partial {x^2}}} + 5\frac{{{\partial ^2}z}}{{\partial x\partial y}} + 2\frac{{{\partial ^2}z}}{{\partial {y^2}}} = 0\)
    Solution

    Given equation is

    \(\left( {2{D^2} + 5DD' + 2{{D'}^2}} \right)z = 0\)

    Where \(D = \frac{{\partial z}}{{\partial x}},\;D' = \frac{{\partial z}}{{\partial y}}\)

    Let D/D1 = m

    ⇒ 2 m2 + 5m + 2 = 0

    ⇒ m = -2, -1/2

    The complete solution is

    \(\begin{array}{l} Z = {f_1}\left( {y - 2x} \right) + {f_2}\left( {y - \frac{1}{2}x} \right)\\ \Rightarrow z = {f_1}\left( {y - 2x} \right) + {f_2}\left( {2y - x} \right) \end{array}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now