Concept:
Consider the system of m linear equations
a11 x1 + a12 x2 + … + a1n xn = b1
a21 x1 + a22 x2 + … + a2n xn = b2
…
am1 x1 + am2 x2 + … + amn xn = bm
The above equations containing the n unknowns x1, x2, …, xn. To determine whether the above system of equations is consistent or not, we need to find the rank of following matrices.
\(A=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & \ldots & {{a}_{1n}} \\ {{a}_{21}} & {{a}_{22}} & \ldots & {{a}_{2n}} \\ \ldots & \ldots & \ldots & \ldots \\ {{a}_{m1}} & {{a}_{m2}} & \ldots & {{a}_{mn}} \\ \end{matrix} \right]~and~\left[ A\text{ }\!\!|\!\!\text{ }B \right]=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & \ldots & {{a}_{1n}} & {{b}_{1}} \\ {{a}_{21}} & {{a}_{22}} & \ldots & {{a}_{2n}} & {{b}_{2}} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ {{a}_{m1}} & {{a}_{m2}} & \ldots & {{a}_{mn}} & {{b}_{m}} \\ \end{matrix} \right]\)
A is the coefficient matrix and [A|B] is called as augmented matrix of the given system of equations.
We can find consistency of the given system of equations as follows:
(i) If the rank of matrix A is equal to rank of augmented matrix and it is equal to number of unknowns, then system is consistent and there is a unique solution.
Rank of A = Rank of augmented matrix = n
(ii) If the rank of matrix A is equal to rank of augmented matrix and it is less than the number of unknowns, then system is consistent and there are infinite number of solutions.
Rank of A = Rank of augmented matrix < n
(iii) If the rank of matrix A is not equal to rank of augmented matrix, then system is inconsistent, and it has no solution.
Rank of A ≠ Rank of augmented matrix
Calculation:
Case a: x1 + x2 = 1, 2x1 – x2 = 0
The given system of equations can be represented in a matrix form as shown below.
\(A=\left[ \begin{matrix} 1 & 1 \\ 2 & -1 \\ \end{matrix} \right],~X=\left[ \begin{matrix} {{x}_{1}} \\ {{x}_{2}} \\ \end{matrix} \right],~B=\left[ \begin{matrix} 1 \\ 0 \\ \end{matrix} \right]\)
The Augmented matrix can be written by
\(\left[ A\text{ }\!\!|\!\!\text{ }B \right]=\left[ \begin{matrix} 1 & 1 \\ 2 & -1 \\ \end{matrix}\text{ }\!\!|\!\!\text{ }\begin{matrix} 1 \\ 0 \\ \end{matrix} \right]\)
R2 → R2 – 2R1
\(=\left[ \begin{matrix} 1 & 1 \\ 0 & -3 \\ \end{matrix}\text{ }\!\!|\!\!\text{ }\begin{matrix} 1 \\ -2 \\ \end{matrix} \right]\)
Rank of A = Rank of augmented matrix = n
So, it has unique solution.
Case b: x1 + x2 = 1, 2x1 + 2x2 = 2
The given system of equations can be represented in a matrix form as shown below.
\(A=\left[ \begin{matrix} 1 & 1 \\ 2 & 2 \\ \end{matrix} \right],~X=\left[ \begin{matrix} {{x}_{1}} \\ {{x}_{2}} \\ \end{matrix} \right],~B=\left[ \begin{matrix} 1 \\ 2 \\ \end{matrix} \right]\)
The Augmented matrix can be written by
\(\left[ A\text{ }\!\!|\!\!\text{ }B \right]=\left[ \begin{matrix} 1 & 1 \\ 2 & 2 \\ \end{matrix}\text{ }\!\!|\!\!\text{ }\begin{matrix} 1 \\ 2 \\ \end{matrix} \right]\)
R2 → R2 – 2R1
\(=\left[ \begin{matrix} 1 & 1 \\ 0 & 0 \\ \end{matrix}\text{ }\!\!|\!\!\text{ }\begin{matrix} 1 \\ 0 \\ \end{matrix} \right]\)
Rank of A = Rank of augmented matrix < n
So, it has infinitely many solutions.
Case c: x1 + x2 = 1, x1 + x2 = 0
The given system of equations can be represented in a matrix form as shown below.
\(A=\left[ \begin{matrix} 1 & 1 \\ 1 & 1 \\ \end{matrix} \right],~X=\left[ \begin{matrix} {{x}_{1}} \\ {{x}_{2}} \\ \end{matrix} \right],~B=\left[ \begin{matrix} 1 \\ 0 \\ \end{matrix} \right]\)
The Augmented matrix can be written by
\(\left[ A\text{ }\!\!|\!\!\text{ }B \right]=\left[ \begin{matrix} 1 & 1 \\ 1 & 1 \\ \end{matrix}\text{ }\!\!|\!\!\text{ }\begin{matrix} 1 \\ 0 \\ \end{matrix} \right]\)
R2 → R2 – R1
\(=\left[ \begin{matrix} 1 & 1 \\ 0 & 0 \\ \end{matrix}\text{ }\!\!|\!\!\text{ }\begin{matrix} 1 \\ -1 \\ \end{matrix} \right]\)
Rank of A ≠ Rank of augmented matrix
So, it has no solution.