Concept:
In a single-phase resistor split induction motor, the condition to get the maximum starting torque is
θm = 2θa
\( \Rightarrow {\tan ^{ - 1}}\left( {\frac{{{X_m}}}{{{R_m}}}} \right) = 2{\tan ^{ - 1}}\left( {\frac{{{X_a}}}{{{R_a}}}} \right)\)
In a capacitor start induction motor,
The condition to get the maximum starting torque is
θm + 2θa = 90°
\( \Rightarrow {\tan ^{ - 1}}\left( {\frac{{{X_m}}}{{{R_m}}}} \right) + 2{\tan ^{ - 1}}\left( {\frac{{{X_a}}}{{{R_a}}}} \right) = 90^\circ \)
Where θm is the power factor angle of the main winding
θa is the power factor angle of the auxiliary winding
Calculation:
Given that, Rm = 1 Ω, Xm = √3 Ω
Power factor angle of main winding, \({\theta _m} = {\tan ^{ - 1}}\left( {\frac{{{X_m}}}{{{R_m}}}} \right)\)
\( = {\tan ^{ - 1}}\left( {\frac{{\sqrt 3 }}{1}} \right) = 60^\circ \)
The condition to get the maximum starting torque is
θm + 2θa = 90°
⇒ 60° + 2θa = 90°
⇒ θa = 15°
Ra = 1 Ω, Xa = 1.2 Ω
Let the external capacitance to be added is XC Ω
Now, \({\tan ^{ - 1}}\left( {\frac{{{X_C} - {X_a}}}{{{R_a}}}} \right) = 15^\circ \)
\( \Rightarrow {\tan ^{ - 1}}\left( {\frac{{{X_C} - 1.2}}{1}} \right) = 15^\circ \)
⇒ XC = 1.468 Ω
\( \Rightarrow \frac{1}{{2\pi fC}} = 1.468\)
\( \Rightarrow C = \frac{1}{{2\pi \times 50 \times 1.468}} = 2.17\;mF\)