Self Studies

Electrical Machines Test 6

Result Self Studies

Electrical Machines Test 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A 6 pole slip ring induction motor operating on 50 Hz supply is driven by a variable speed prime mover as a frequency changer. If it is operated at 1500 rpm in opposite direction then the supply frequency generated is – (in Hz)
    Solution

    General equation for the frequency of an induction frequency changer is

    \(f = {f_s}\left( {1 + \frac{{{N_r}}}{{{N_s}}}} \right)\)

    +ve for opposite direction of rotation

    -ve for same direction of rotation

    \(f = {f_s}\left( {1 + \frac{{{N_r}}}{{{N_s}}}} \right)\)

    \({N_s} = \frac{{120{f_s}}}{P} = \frac{{120 \times 50}}{6} = 1000\;rpm\)

    \(f = 50\;\left( {1 + \frac{{1500}}{{1000}}} \right) = 125\;Hz\)

  • Question 2
    1 / -0
    A three phase squirrel cage induction motor has a starting current of eight times the full load current and full load slip of 4%. If an autotransformer is used for reduced voltage starting to provide 150% of full load torque as starting torque. The autotransformer ratio will be – (in %)
    Solution

    We know that,

    \(\begin{array}{l} \frac{{{T_{st}}}}{{{T_{fl}}}} = {\left( {\frac{{{I_{st}}}}{{{I_{fl}}}}} \right)^2} \times {s_{fl}} = {\left( {\frac{{x\;{I_{sc}}}}{{{I_{fl}}}}} \right)^2} \times {s_{fl}}\\ \Rightarrow \frac{{1.5\;{T_{fl}}}}{{{T_{fl}}}} = {x^2}{\left( {\frac{{8{I_{fl}}}}{{{I_{fl}}}}} \right)^2} \times 0.04 \end{array}\)  

    ⇒ x = 0.7654

    % tapping of auto-transformer = 76.54%
  • Question 3
    1 / -0
    A centre-zero Galvanometer is properly connected in the rotor of 4 Pole 60 Hz wound-rotor induction motor. When the galvanometer makes 144 complete oscillations in one minute, calculate the rotor speed in rpm.
    Solution

    One complete oscillation of galvanometer corresponds to one cycle of rotor frequency.

    Rotor frequency \({f_r} = s{f_1} = \frac{{144}}{{60}} = 2.4\;Hz\)

    Slip, \(s = \frac{{{f_r}}}{{{f_1}}} = \frac{{2.4}}{{60}} = 0.04\)

    Rotor speed = Nr = Ns (1 – s)

    \({N_s} = \frac{{120 \times f}}{P}\)

    \({N_r} = \frac{{120 \times 60}}{4}\left( {1 - 0.04} \right)\)

    = 120 × 15 × 0.96

    = 1728 rpm.
  • Question 4
    1 / -0

    A 3000 V, 24 pole, 50 Hz, 3-phase, star connected induction motor has a slip ring rotor of resistance 0.016 Ω and stand still reactance 0.265 Ω per phase.

    Full load torque is obtained at a speed of 247 rev per minute. Neglect rotor impedance.

    Estimate the ratio of maximum to full load torque.
    Solution

    Concept:

    The ratio of maximum torque to full load torque is

    \(\frac{{{T_m}}}{{{T_{fL}}}} = \frac{{s_m^2 + s_{fL}^2}}{{2\;{s_m}{s_{fL}}}}\)

    Where sm is the slip at maximum torque.

    sfl is the slip at full load torque.

    Slip at maximum torque, \({s_m} = \frac{{{R_2}}}{{{X_2}}}\)

    R2 is the rotor resistance

    X2 is the rotor reactance

    Calculation:

    Given that, Number of poles (P) = 24

    Frequency (f) = 50 Hz

    Synchronous speed \(\left( {{N_s}} \right) = \frac{{120\;f}}{P}\)

    \( \Rightarrow {N_s} = \frac{{120\; \times \;50}}{{24}} = 250\;rpm\)

    Rotor resistance (R2) = 0.016 Ω

    Rotor reactance (X2) = 0.265 Ω

    Slip at maximum torque, \({s_m} = \frac{{0.016}}{{0.265}} = 0.06\)

    Speed corresponding to full load torque (Nr) = 247 rpm

    Slip at full load torque \(\left( {{s_{fL}}} \right) = \frac{{250 - 247}}{{250}} = 0.012\)

    \(\frac{{{T_m}}}{{{T_{fL}}}} = \frac{{{{\left( {0.06} \right)}^2}\; + \;{{\left( {0.012} \right)}^2}}}{{2\; \times \;0.06\; \times \;0.012}} = 2.6\)
  • Question 5
    1 / -0
    A 6-pole, 50 Hz, 3 – phase induction motor running on full load with 4% slip develops a torque of 149.3 N-m at its pulley rim. The friction and windage losses are 200 W and the stator cu and iron losses equal to 1620 W. The efficiency at full load is ____
    Solution

    Synchronous speed, \({N_S} = \frac{{120\;f}}{P}\)

    \(\Rightarrow {N_s} = \frac{{120\; \times \;50}}{6} = 1000\;rpm\)

    Nr = (1 - s) Ns = (1 – 0.04) 1000 = 960 rpm

    Output power \(= {T_{sh}} \times \frac{{2\pi N}}{{60}}\)

    \(= 2\pi \times \frac{{960}}{{60}} \times 149.3 = 15\;kW\)

    Friction and windage losses = 200 W

    Rotor gross output = 15,200 W

    Rotor input \(= 15,200 \times \frac{{1000}}{{960}} = 15,833\;W\)

    Stator cu and iron losses = 1620 W

    Stator input = 15,833 + 1620 = 17,453 W

    Efficiency \(= \frac{{Output}}{{input}} = \frac{{15000}}{{17453}} \times 100\)

    = 85.94%

  • Question 6
    1 / -0

    A 150 kW, 3000 V, 50 Hz, 6 – pole star connected induction motor has a star-connected slip ring rotor with a transformation ratio of 3.6 (stator/rotor).

    The rotor resistance is 0.1 Ω/phase and its per phase leakage reactance is 3.61 mH. The stator impedance may be neglected. The starting torque on rated voltage with short-circuited slip rings is ______ (in N-m)
    Solution

    X2 = 2πfL

    X2 = 2π × 50 × 3.61 × 10-3 = 1.13 Ω

    Transformation ratio,\(k = \frac{1}{{3.6}}\)

    \(X_2' = \frac{{{X_2}}}{{{k^2}}} = \left( {1.13} \right){\left( {3.6} \right)^2} = 14.7\;{\rm{\Omega }}\)

    R2 = 0.1 Ω/phase

    \(R_2' = \frac{{{R_2}}}{{{k^2}}} = {\left( {3.6} \right)^2} \times 0.1 = 1.3\;{\rm{\Omega }}\)

    \({N_s} = \frac{{120\;f\;}}{P} = \frac{{120\; \times \;50}}{6} = 1000\;rpm\)

    \({T_{st}} = \frac{{180}}{{2\pi {N_s}}} \cdot \frac{{{V^2}R_2'}}{{{{\left( {R_2'} \right)}^2} + {{\left( {X_2'} \right)}^2}}}\)

    \(= \frac{{180}}{{2\pi \times 1000}} \times \;\frac{{{{\left( {\frac{{3000}}{{\sqrt 3 }}} \right)}^2} \times \;1.3}}{{\left( {{{1.3}^2}\; + \;{{14.7}^2}} \right)}} = 513\;Nm\)

  • Question 7
    1 / -0

    A 3-phase, 50 Hz, 12 pole induction motor has star connected rotor and the resistance measured across any two slip ring is 0.04 Ω. Its full load slip is 0.02 the torque required by the load varies as the speed squared. The torque slip curve to be a straight line. In the normal operating region. The resistance to be inserted in the rotor circuit to reduce the full load speed 350 RPM is ______

    Solution

    \(Resistance\;per\;phase = \frac{{0.04}}{2} = 0.02{\rm{\Omega }},\;{S_{fl}} = 0.02\) 

    Torque ∝ N2

    \(T \propto \frac{{S{V^2}}}{{{R_2}}}\left( {0\;to\;{S_{mT}}} \right)\) 

    \(T \propto \frac{{{R_2}}}{S}\left( {{S_{mT}}\;to\;1} \right)\) 

    \({N_s} = \frac{{120 \times 50}}{{12}} = 500\;rpm\) 

    \(S_{Fl}' = \frac{{500 - 350}}{{350}} = 0.3\) 

    \(\frac{S}{{{R_2}}} \propto {\omega ^2}\) if voltage is not changing

    N1 = 500 (1 – 0.02) = 490 rpm

    \(\frac{{{S_1}}}{{{R_1}}} \times \frac{{{R_2}}}{{{S_2}}} = {\left( {\frac{{{N_1}}}{{{N_2}}}} \right)^2}\) 

    \(\frac{{0.02}}{{0.02}} \times \frac{{0.02 + {R_{ext}}}}{{0.3}} = {\left( {\frac{{490}}{{350}}} \right)^2}\) 

    Rext = 0.568 Ω

  • Question 8
    1 / -0

    For a 3-phase slip ring induction motor, the maximum torque is 2.5 times the full load torque and the starting torque is 1.5 times the full load torque. The percentage reduction in rotor circuit resistance to get a full load slip of 3% is _______

    Neglect stator impedance.

    Solution

    Given that, Tm = 2.5 Tfl

    Tst = 1.5 Tfl

    \(\Rightarrow \frac{{{T_m}}}{{{T_{st}}}} = \frac{{2.5}}{{1.5}}\)

    \(\Rightarrow \frac{{1\; +\; {a^2}}}{{2a}} = \frac{5}{3}\)

    3a2  - 10 a + 3 = 0

    \(\Rightarrow a = \frac{1}{3}\)

    \(\Rightarrow \frac{{{R_2}}}{{{X_2}}} = \frac{1}{3} \Rightarrow {R_2} = \frac{{{X_2}}}{3}\)

    When full load slip is 0.03

    \(\frac{{{T_{fL}}}}{{{T_{in}}}} = \frac{{2{s_m}{s_{fL}}}}{{s_m^2\; + \;s_{fL}^2}}\)

    \(\Rightarrow \frac{1}{{2.5}} = \frac{{2{s_m}\left( {0.03} \right)}}{{s_m^2\; + \;{{\left( {0.03} \right)}^2}}}\)

    \(\Rightarrow s_m^2 - 0.15\;{s_m} + 0.0009\) = 0

    sm = 0.1437

    \(\Rightarrow \frac{{R_2'}}{{{X_2}}} = 0.1437\)

    \(\Rightarrow R_2' = 0.1437\;\;{X_2}\)

    % reduction in rotor resistance is

    \(= \frac{{\frac{{{X_2}}}{3} - 0.1437\;\;{X_2}}}{{\frac{{{X_2}}}{3}}} \times 100 = 56.89\%\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now