Concept:
In a single-phase resistor split induction motor, the condition to get the maximum starting torque is
θm = 2θa
\( \Rightarrow {\tan ^{ - 1}}\left( {\frac{{{X_m}}}{{{R_m}}}} \right) = 2{\tan ^{ - 1}}\left( {\frac{{{X_a}}}{{{R_a}}}} \right)\)
In a capacitor start induction motor,
The condition to get the maximum starting torque is
θm + 2θa = 90°
\( \Rightarrow {\tan ^{ - 1}}\left( {\frac{{{X_m}}}{{{R_m}}}} \right) + 2{\tan ^{ - 1}}\left( {\frac{{{X_a}}}{{{R_a}}}} \right) = 90^\circ \)
Where θm is the power factor angle of the main winding
θa is the power factor angle of the auxiliary winding
Calculation:
Given that, main winding impedance, Zm = 3 + j4 Ω
Auxiliary winding impedance, Za = 6 + j8 Ω
Power factor angle of main winding, \({\theta _m} = {\tan ^{ - 1}}\left( {\frac{{{X_m}}}{{{R_m}}}} \right)\)
\( = {\tan ^{ - 1}}\left( {\frac{4}{3}} \right) = 53.13^\circ \)
The condition to get the maximum starting torque is
θm + 2θa = 90°
⇒ 53.13° + 2θa = 90°
⇒ θa = 18.43°
Let the external capacitance to be added is XC Ω
Now, \({\tan ^{ - 1}}\left( {\frac{{{X_C} - {X_a}}}{{{R_a}}}} \right) = 18.43^\circ \)
\( \Rightarrow {\tan ^{ - 1}}\left( {\frac{{{X_C} - 8}}{6}} \right) = 18.43^\circ \)
⇒ XC = 10 Ω
\( \Rightarrow \frac{1}{{2\pi fC}} = 10\)
\( \Rightarrow C = \frac{1}{{2\pi \times 50 \times 10}} = 318.3\;\mu F\)