Self Studies

Electrical Machines Test 8

Result Self Studies

Electrical Machines Test 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    A three-phase alternator has generated emf per phase of 230 V with 10% of third harmonic and 6% of fifth harmonic content. The rms line voltage for star connected is ______ (in V)

    Solution

    Fundamental voltage (E1) = 230 V

    Fifth harmonic voltage (E5) = 230 × 0.06 = 13.8 V

    In star connector, the third harmonic components of the three phases cancel out at the line terminals.

    Hence, the line emf is composed of the fundamental and the fifth harmonic only.

    Phase voltage (Eph\(= \sqrt {E_1^2 + E_5^2} = \sqrt {{{\left( {230} \right)}^2} + {{\left( {13.8} \right)}^2}} = 230.4\)

    RMS value of line emf \(= \sqrt 3 \times 230.4 = 399\;V\)

  • Question 2
    1 / -0
    An alternator an open circuit generates 360 V at 60 Hz when the field current is 3.6 A. By neglecting the saturation, the open-circuit emf when the frequency is 40 Hz and field current is 2.4 A, is ______ (in V)
    Solution

    From the emf equation of an alternator,

    E ϕf

    And ϕ If

    E If f

    \(\Rightarrow \frac{{{E_1}}}{{{E_2}}} = \frac{{{I_{f1}}}}{{{I_{f2}}}} \times \frac{{{f_1}}}{{{f_2}}}\)

    E1 = 360 V, If1 = 3.6, f1 = 60 Hz

    If2 = 2.4, f2 = 40 Hz

    \(\Rightarrow \frac{{360}}{{{E_2}}} = \frac{{3.6}}{{2.4}} \times \frac{{60}}{{40}}\)

    E2 = 160 V

  • Question 3
    1 / -0

    The following test results are obtained for a 3ϕ, 25 kV, 750 MVA, 60 Hz, 3600 rpm, star connected synchronous machine at rates speed.

    If (A)

    VLL (kV)

    open-circuit test

    Ia (A)

    short-circuit test

    VLL (kV)

    air gap line

    1500

    25

    10,000

    30


    The unsaturated and saturated values of the synchronous reactance respectively are
    Solution

    Unsaturated synchronous reactance,

    \({X_{s\left( {unsat} \right)}} = \frac{V}{{{I_{SC}}}} = \frac{{\frac{{30 \times {{10}^3}}}{{\sqrt 3 }}}}{{10 \times {{10}^3}}} = 1.732\;{\rm{\Omega }}\)

    \({X_{s\left( {sat} \right)}} = \frac{{{V_{OC}}}}{{{I_{SC}}}} = \frac{{\frac{{25 \times {{10}^3}}}{{\sqrt 3 }}}}{{10 \times {{10}^3}}} = 1.44\;{\rm{\Omega }}\)

    Base voltage \(\left( {{V_b}} \right) = \frac{{25}}{{\sqrt 3 }}kV\)

    Base current \(\left( {{I_b}} \right) = \frac{{750 \times {{10}^6}}}{{\sqrt 3 \times 25 \times {{10}^3}}} = 17.32\;kA\)

    Base impedance \(\left( {{Z_b}} \right) = \frac{{25}}{{\sqrt 3 \times 17.32}} = 0.833\)

    \({X_{s\left( {unsat} \right)}} = \frac{{1.732}}{{0.833}} = 2.078\;pu\)

    \({X_{c\left( {sat} \right)}} = \frac{{1.4434}}{{0.833}} = 1.732\;pu\)

  • Question 4
    1 / -0
    A star connected synchronous generator is tested at the rated field current of 5 A. The open circuit voltage and the short circuit current are measured to be 540 V and 300 A respectively. If DC voltage of 10 V is applied across the terminals causes a current of 25 A, then the value of armature resistance is__ (in Ω)
    Solution

    Since the generator is star connected, so the direct current flows through two windings. Thus, the armature resistance is

    \(2{R_a} = \frac{{{V_{dc}}}}{{{I_{dc}}}}\)

    \( \Rightarrow {R_a} = \frac{{{V_{dc}}}}{{2{I_{dc}}}} = \frac{{10}}{{2\left( {25} \right)}} = 0.2\;{\rm{\Omega }}\)

  • Question 5
    1 / -0

    The following test results are obtained from a 3-phase, 6000 kVA, 6600 V, star connected, 2-pole, 50-Hz turbo alternator.

    With a field current of 125 A, the open circuit voltage is 8,000 V at the rated speed. With the same field current and rated speed, the short circuit current is 800 A. At the rated full load, the resistance drop is 3 percent.

    The percentage regulation of the alternator on full-load and at a power factor of 0.8 lagging is _____
    Solution

    Synchronous impedance \(= \frac{{{V_{OC}}}}{{{I_{SC}}}}\)

    \(\Rightarrow {Z_s} = \frac{{\frac{{8000}}{{\sqrt 3 }}}}{{800}} = 5.77\;{\rm{\Omega }}\)

    Voltage/phase \(\left( {{V_{ph}}} \right) = \frac{{6600}}{{\sqrt 3 }} = 3810.5\;V\)

    Resistive drop = 3% of 3810.5 = 114.315 V

    Full load current, \({I_a} = \frac{{\frac{{6000 \times {{10}^3}}}{{\sqrt 3 }}}}{{6600}} = 524.86\;A\)

    Resistive drop (Ia Ra) = 114.315 V

    \( \Rightarrow {R_a} = \frac{{114.315}}{{524.86}} = 0.218\;{\rm{\Omega }}\)

    \({X_s} = \sqrt {Z_s^2 - R_a^2} = \sqrt {{{\left( {5.77} \right)}^2} - {{\left( {0.218} \right)}^2}} = 5.76\;{\rm{\Omega }}\)

    \({E_0} = \sqrt {{{\left( {V\cos \phi + {I_a}{R_a}} \right)}^2} + {{\left( {V\sin \phi + {I_a} \times s} \right)}^2}} \)

    \( = \sqrt {{{\left( {3810.5 \times 0.8 + 114.3} \right)}^2} + {{\left( {3810.6 \times 0.6 + 525 \times 5.76} \right)}^2}} \)

    = 6180.77 V

    % Regulation, \(\frac{{E - V}}{V} \times 100\)

    \(= \frac{{6180.77 - 3810.5}}{{3810.5}} \times 100 = 62.2\)

  • Question 6
    1 / -0
    A 3-phase 16-pole alternator has a star connected winding with 144 slots and 10 conductors per slot. The flux per pole is 0.03 Wb, sinusoidally distributed and the speed is 375 rpm. The line to line emf is _______ (in V)
    Solution

    Synchronous speed \(\left( {{N_s}} \right) = \frac{{120\;f}}{p}\)

    \(\Rightarrow 375 = \frac{{120 \times f}}{{16}}\)

    f = 50 Hz

    Flux per pole (ϕ) = 0.03 Wb

    Slots per pole \(= \frac{{144}}{{16}} = 9\)

    Slot angle \(\left( \beta \right) = \frac{{180}}{9} = 20^\circ \)

    Slots per pole per phase \(\left( m \right) = \frac{9}{3} = 3\)

    \({K_d} = \frac{{\sin \frac{{m\beta }}{2}}}{{m\sin \frac{\beta }{2}}} = \frac{{\sin \left( {\frac{{3 \times 20}}{2}} \right)}}{{3\sin \left( {\frac{{20}}{2}} \right)}} = 0.96\)

    Total number of conductors \(\left( z \right) = \frac{{144 \times 10}}{3} = 480\)

    Number of turns per phase \(\left( T \right) = \frac{{480}}{2} = 240\)

    Eph = 4.44 × 1 × 0.96 × 50 × 0.03 × 240 = 1534 V

    Line emf. \({E_L} = \sqrt 3 \;\;{E_{ph}} = 2657.76\;V\)

  • Question 7
    1 / -0
    A 3000 kVA, 3 – phase, star connected 6600 volt, 8-pole, 50 Hz alternator has a synchronous reactance of 20% and is running in parallel with infinite bus. The Synchronizing torque per mechanical degree of phase displacement at no load is ________ (in kN-m)
    Solution

    Per phase voltage, \({V_t} = \frac{{6600}}{{\sqrt 3 }} = 3810.5\;V\)

    Per phase armature current,

    \({I_a} = \frac{{\left( {3000} \right)\left( {{{10}^3}} \right)}}{{\sqrt 3 \left( {6600} \right)}} = 262.43\;A\)

    Percentage reactance, \({X_s} = \frac{{{X_s}\;in\;ohms}}{{{V_t}/{I_a}}} \times 100\)

    \(= \frac{{20}}{{100}} \times \frac{{3810.5}}{{262.43}} = 2.9\)

    At no load, synchronizing power per mechanical degree,

    \({P_s} = m\frac{{dp}}{{d\delta }} \cdot \frac{{\pi p}}{{360}} = \frac{{3\;{V_t}{E_f}}}{{{X_s}}}\cos \delta \cdot \frac{{\pi p}}{{360}}\)

    \(= \frac{{3 \times {{\left( {3810} \right)}^2}}}{{2.90}} \times \frac{{\pi \left( 8 \right)}}{{360}} = 1048.36\;kW\)

    Synchronizing torque,

    \({T_s} = \frac{{60}}{{2\pi \times {N_s}}} \cdot {P_s}\)

    \(= \frac{8}{{2\pi \left( {100} \right)}}\;\left( {1048.36 \times {{10}^3}} \right)\)

    = 13, 348.13 N-m

  • Question 8
    1 / -0

    Two 600 kVA alternators operate in parallel to supply the following loads.

    (i) 300 kW at 0.8 pf lagging

    (ii) 150 kW at 0.6 pf lagging.

    If one machine is supplying 250 kW at 0.85 pf lagging, the power factor of the other machine is -
    Solution

    Active power of total load is,

    \({P_L} = 300 + 150 = 450\;kW\) 

    Reactive power of total load is,

    \({Q_L} = 300 \times \tan \left( {{{\cos }^{ - 1}}\left( {0.8} \right)} \right) + 150\tan \left( {{{\cos }^{- 1}}\left( {0.6} \right)} \right)\) 

    = 300 × 0.75 + 150 × 1.33 = 424.5 kVAR

    Rating of machine 1, 250 kW at 0.85 pf lag:

    P1 = 250 kW,

    Q1 = 250 × tan (cos-1 (0.85)) = 154.93 kVAR

    P2 = PL - P1 = 450 - 250 = 200 kW

    Q2 = QL - Q1 = 424.5 - 154.93 = 269.57 kVAR

    Q2 = P2 tan ϕ

    ⇒ tan ϕ = 1.34785

    ⇒ power factor = cos ϕ = 0.59
  • Question 9
    1 / -0
    A synchronous generator has its effective internal impedance Zs = 10 Ω and resistance ra = 1 Ω. Its generated voltage Ef and terminal voltage Vt are both 500 V. The maximum power output is___ (in kW)
    Solution

    Zs = 10 Ω, ra = 1 Ω, Ef = Vt = 500 V

    The maximum power output

    \({P_{og\left( {{\rm{max}}} \right)}} = \frac{{{E_f}{V_t}}}{{{Z_s}}} - \frac{{V_t^2}}{{Z_s^2}}.{r_a} = \frac{{500 \times 500}}{{10}} - \frac{{{{500}^2}}}{{{{10}^2}}} \times 1 = 22.5\;kW\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now