\({Z_{B\left( {new} \right)}} = {Z_{B\left( {old} \right)}} - \frac{1}{{{Z_{ij}} + {Z_b}}}\left[ {\begin{array}{*{20}{c}}{{Z_{ij}}}\\ \vdots \\{{Z_{nj}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{Z_{ji}}}& \ldots &{{Z_{jn}}}\end{array}} \right]\)
New element Zb = j0.2Ω is connected in jth and reference bus j = 2, n = 4 so
\(\frac{1}{{{Z_{ij}} + {Z_b}}}\left[ {\begin{array}{*{20}{c}}{{Z_{12}}}\\{{Z_{22}}}\\{{Z_{23}}}\\{{Z_{24}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{Z_{21}}}&{{Z_{22}}}&{{Z_{23}}}&{{Z_{24}}}\end{array}} \right]\)
\(= \frac{1}{{\left[ {j\left( {0.3408} \right) + j\left( {0.2} \right)} \right]}}\left[ {\begin{array}{*{20}{c}}{j0.2860}\\{j0.3408}\\{j0.2586}\\{j0.2414}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{j.0.2860}&{j0.3408}&{j0.2586}&{j0.2414}\end{array}} \right]\)
Given that we are required to change only Z22, Z23
\(\begin{array}{l}Z_{22}^1 = \frac{{{j^2}{{\left( {0.3408} \right)}^2}}}{{j\left( {0.5408} \right)}} = j0.2147\\Z_{23}^1 = \frac{{{j^2}\left( {0.3408} \right)\left( {0.2586} \right)}}{{j\left( {0.5408} \right)}} = j0.16296\\{Z_{22\left( {new} \right)}} = {Z_{22\left( {old} \right)}} - Z_{22}^1 = j0.3409 - j0.2147\end{array}\)
= j 0.1260
\({Z_{23\left( {new} \right)}} = {Z_{23\left( {old} \right)}} - Z_{23}^1 = j0.2586 - j0.16296\)
= j 0.0956