Self Studies

Power Systems Test 9

Result Self Studies

Power Systems Test 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A 50 Hz four pole alternator rated 100 MVA, 11 kV has an inertia constant of 5 MJ/MVA. Calculate the stored KE in rotor at synchronous speed is in MJ ______. [System stability]
    Solution

    Inertia constant, H = (stored kinetic energy)/(rating of machine)

    Given that, f = 50 Hz, P = 4, V = 11 kV

    S = 100 MVA

    H = 5 MJ/MVA

    Stored KE = H × S

    = 5 × 100 = 500 MJ

  • Question 2
    1 / -0
    Reactive power compensation is applied at the midpoint of an EHV line of total reactance 0.2 pu to maintain the voltage there at 0.98 pu. The voltage at both ends of the line is 1∠0° pu. The steady-state power transfer limit, in pu is _______.
    Solution

    Reactive power compensation, X is applied at midpoint hence it becomes \(\frac{X}{2},\) and hence the power transfer limit is \(\frac{{{V_s}{V_m}}}{{\frac{X}{2}}}.\)

    Where, Vs =sending end voltage

    Vm = maintained voltage at other end of the line

    Given that, Vs = 1 pu, Vm = 0.98, X = 0.2

    Steady-state power transfer limit \(= \frac{{{V_s}{V_m}}}{{X/2}}\)

    \(= \frac{{1\; \times \;0.98}}{{\frac{{0.2}}{2}}} = 9.8\;pu\) 

  • Question 3
    1 / -0
    A 50 Hz generator having H = 6 MJ/MVA is connected to the synchronous motor having H = 4 MJ/MVA through a network of reactances. The generator is delivering power of 1.0 pu to the motor which reduces to 0.6 pu when the fault occurs. The angular acceleration in elec-degrees/sec2 is ______
    Solution

    When two synchronous machines do not swing together, \({H_{eq}} = \frac{{{H_1}{H_2}}}{{{H_1} + {H_2}}}\)

    Also, acceleration angle α is \(\frac{{{d^2}\delta }}{{d{t^2}}}\)

    Given that, H1 = 6 MJ/MVA, H2 = 4 MJ/MVA, f = 50 Hz

    \({H_{eq}} = \frac{{{H_1}{H_2}}}{{{H_1}\; + \;{H_2}}} = \frac{{6\; \times \;4}}{{6\; + \;4}} = 2.4\) 

    \(M = \frac{{{H_{eq}}}}{{180\; \times \;f}} = \frac{{2.4}}{{180\; \times \;50}} = \frac{1}{{3750}}\) 

    \(\alpha = \frac{{{d^2}\delta }}{{d{t^2}}} = \frac{{{P_a}}}{M} = \frac{{1 - 0.6}}{{\frac{1}{{3750}}}}\) 

    ⇒ α = 1500 elec-deg/sec2

  • Question 4
    1 / -0
    A 3-ϕ generator delivers 1.0 pu power to an infinite bus through a transmission network when a fault occurs. The maximum power which can be transferred during pre-fault, during fault and post fault condition is 1.75 pu, 0.4 pu, and 1.25 pu. The critical clearing angle is ______ degrees.
    Solution

    The critical clearing angle is given by,

    \({\delta _c} = {\cos ^{ - 1}}\left[ {\frac{{{P_s}\left( {{\delta _{max}} - {\delta _o}} \right) + {P_{m3}}\cos {\delta _{max}} - {P_{m2}}{\delta _o}}}{{{P_{m3}} - {P_{m2}}}}} \right]\) 

    \({\delta _0} = {\sin ^{ - 1}}\left( {\frac{{{P_s}}}{{{P_{m1}}}}} \right)\)

    \({\delta _{max}} = \pi - {\sin ^{ - 1}}\left( {\frac{{{P_s}}}{{{P_{m3}}}}} \right)\)

    Where Pm1 is the maximum power transfer at the pre-fault condition

    Pm2 is the maximum power transfer at the during-fault condition

    Pm3 is the maximum power transfer at the post-fault condition 

    Calculation:

    Given that, Pmax1 = 1.75 pu, Pmax2 = 0.4 pu, Pmax3 = 1.25 pu

    Ps = 1.0 pu

    Now, Ps = Pm1 sin δo

    \(\Rightarrow \sin {\delta _o} = \frac{1}{{1.75}}\) 

    ⇒ δo = 0.608 radians = 34.85°

    \({\delta _{max}} = \pi - {\sin ^{ - 1}}\left( {\frac{{{P_s}}}{{{P_{m3}}}}} \right)\) 

    \(= \pi - {\sin ^{ - 1}}\left( {\frac{1}{{1.25}}} \right)\) 

    ⇒ δmax = 2.214 radians = 126.86°

    Critical clearing angle, δc

    \({\delta _c} = {\cos ^{ - 1}}\left[ {\frac{{{P_s}\left( {{\delta _{max}} - {\delta _o}} \right) + {P_{m3}}\cos {\delta _{max}} - {P_{m2}}\cos {\delta _o}}}{{{P_{m3}} - {P_{m2}}}}} \right]\) 

    \(= {\cos ^{ - 1}}\left[ {\frac{{1.0\left( {2.214 - 0.608} \right) + 1.25\cos \left( {126.86} \right) - 0.4 \times \cos \left( {34.85} \right)}}{{1.25 - 0.4}}} \right]\) 

    ⇒ δc = 51.6°

  • Question 5
    1 / -0
    A round rotor generator with internal voltage E1 = 2.0 p.u. and X = 1.1 p.u. is connected to a round rotor synchronous motor with internal voltage E2 = 1.3 p.u. and X = 1.2 p.u. The reactance of the line connecting the generator to the motor is 0.5 p.u. When the generator supplies 0.5 p.u. power, the rotor angle difference between the machines will be
    Solution

    A round rotor generator with internal voltage E1 = 2.0 p.u. and X = 1.1 p.u.

    A round rotor synchronous motor with internal voltage E2 = 1.3 p.u. and X = 1.2 p.u.

    Power generated by generator = 0.5 pu

    \({P_e} = \frac{{EV}}{X}\sin \delta = \frac{{{E_1}{E_2}}}{{{X_{eq}}}}\sin \left( {{\delta _1} - {\delta _2}} \right)\)

    \( \Rightarrow 0.5 = \frac{{2 \times 1.3}}{{1.1 + 0.5 + 1.2}}\sin \left( {{\delta _1} - {\delta _2}} \right)\)

    δ1 – δ2 = 32.58°

  • Question 6
    1 / -0
    A 100 MVA generator operates on full-load of 50 Hz frequency. The load is suddenly reduced to 50 MW. The steam valve begins to close only after 0.4 s and if the value of the inertia constant H is 5 s, then the frequency at 0.4 s is nearly
    Solution

    Concept:

    New frequency \({{f}_{n}}={{f}_{i}}\sqrt{\frac{H.S\pm \left( \text{ }\!\!\Delta\!\!\text{ }{{P}_{D}} \right){{T}_{d}}}{H.S}}\)

    Where ΔPD = Load changes

    Td = time delay

    H = inertia constant

    S = generator rating

    fi = initial frequency

    + is used when there is decrease in load

    -is used when there is increase in load

    Calculation:

    Given H = 5

    Td = 0.4 sec

    ΔPD = 100 - 50 = 50

    S = 100

    \({{f}_{n}}=50\sqrt{\frac{5\times 100+\left( 50 \right)0.4}{5\times 100}}=51~Hz\)
  • Question 7
    1 / -0
    The sending end and receiving end voltage of a transmission line are 220 kV. The line is delivering a load 200 MW. The per phase line impedance is (2 + j2) Ω. The maximum steady state power that can be transmitted over the line is_______(in MW)
    Solution

    Maximum steady state power that can be transmitted over the line

    \({P_{max}} = \frac{{\left| {{V_s}} \right|\left| {{V_R}} \right|}}{{\left| z \right|}} - \frac{{{{\left| {{V_R}} \right|}^2}}}{{\left| z \right|}}cos\theta\)

    \(\theta = {\tan ^{ - 1}}\left( {\frac{2}{2}} \right) = 45^\circ\)

    \({P_{max}} = \frac{{{{\left( {220 \times {{10}^3}} \right)}^2}}}{{2\sqrt 2 }} - \frac{{{{\left( {220 \times {{10}^3}} \right)}^2}}}{{2\sqrt 2 }} \times \frac{1}{{\sqrt 2 }}\)

    = 5011.98 MW
  • Question 8
    1 / -0
    A synchronous generator is connected to infinite bus through a loss – less line. It is delivering initially 0.5 pu power to infinite bus. The infinite bus voltage is 1.0. the maximum power transfer before fault is 1.0 pu. The inertia constant is 6 MJ/MVA. the critical clearing angle is 75°, then the critical clear time is _______(in sec)
    Solution

    Ps = 0.5,  Pm1 = 1

    \({\delta _0} = {\sin ^{ - 1}}\left( {\frac{{{P_s}}}{{{P_{m1}}}}} \right) = 30^\circ\)

    δc = 75°

    \({t_c} = \sqrt {\frac{{2 \times \frac{{SH}}{{\pi f}}\left( {{\delta _c} - {\delta _o}} \right)}}{{{P_s}}}}\)

    \(= \sqrt {\frac{{\frac{{2 \times 1.0 \times 6}}{{\pi \times 50}} \times \left( {75 - 30} \right) \times \frac{\pi }{{180}}}}{{0.5}}}\)

    = 0.346 sec

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now