The critical clearing angle is given by,
\({\delta _c} = {\cos ^{ - 1}}\left[ {\frac{{{P_s}\left( {{\delta _{max}} - {\delta _o}} \right) + {P_{m3}}\cos {\delta _{max}} - {P_{m2}}{\delta _o}}}{{{P_{m3}} - {P_{m2}}}}} \right]\)
\({\delta _0} = {\sin ^{ - 1}}\left( {\frac{{{P_s}}}{{{P_{m1}}}}} \right)\)
\({\delta _{max}} = \pi - {\sin ^{ - 1}}\left( {\frac{{{P_s}}}{{{P_{m3}}}}} \right)\)
Where Pm1 is the maximum power transfer at the pre-fault condition
Pm2 is the maximum power transfer at the during-fault condition
Pm3 is the maximum power transfer at the post-fault condition
Calculation:
Given that, Pmax1 = 1.75 pu, Pmax2 = 0.4 pu, Pmax3 = 1.25 pu
Ps = 1.0 pu
Now, Ps = Pm1 sin δo
\(\Rightarrow \sin {\delta _o} = \frac{1}{{1.75}}\)
⇒ δo = 0.608 radians = 34.85°
\({\delta _{max}} = \pi - {\sin ^{ - 1}}\left( {\frac{{{P_s}}}{{{P_{m3}}}}} \right)\)
\(= \pi - {\sin ^{ - 1}}\left( {\frac{1}{{1.25}}} \right)\)
⇒ δmax = 2.214 radians = 126.86°
Critical clearing angle, δc
\({\delta _c} = {\cos ^{ - 1}}\left[ {\frac{{{P_s}\left( {{\delta _{max}} - {\delta _o}} \right) + {P_{m3}}\cos {\delta _{max}} - {P_{m2}}\cos {\delta _o}}}{{{P_{m3}} - {P_{m2}}}}} \right]\)
\(= {\cos ^{ - 1}}\left[ {\frac{{1.0\left( {2.214 - 0.608} \right) + 1.25\cos \left( {126.86} \right) - 0.4 \times \cos \left( {34.85} \right)}}{{1.25 - 0.4}}} \right]\)
⇒ δc = 51.6°