Conceptual Approach:
Fermi level is the level where the probability of finding an electron equals the probability of finding a hole.
Given that the probability of a state being filled with an electron at E = EF + KT is equal to the probability that the state is empty at E = EF + KT, we can conclude that EF + KT in the Fermi-level.
Conventional Method:
Carriers in a semiconductor follow Fermi-Dirac distribution.
The probability that an electron occupies an energy level E is given by:
\(f\left( E \right) = \frac{1}{{1 + e\frac{{\left( {E - {E_F}} \right)}}{{KT}}}}\)
Where EF = Fermi energy level.
The probability of a state being empty is given by:
\(1 - f\left( E \right) = 1 - \frac{1}{{1 + e\frac{{\left( {E - {E_F}} \right)}}{{KT}}}}\)
Now, the probability that an energy state at EC + kT is filled will be given by:
\(f\left( {{E_C} + KT} \right) = \frac{1}{{1 + {e^{\frac{{\left( {{E_C} + KT - {E_F}} \right)}}{{KT}}}}}}\)
Similarly, the probability that a state at EC + KT is empty will be given by:
\(1 - f\left( {{E_C} + KT} \right) = 1 - \frac{1}{{1 + {e^{\frac{{\left( {{E_C} + KT - {E_F}} \right)}}{{KT}}}}}}\)
Given the two probabilities as equal, we can write:
f(EC + KT) = 1 – f (EC + KT)
\(\frac{1}{{1 + {e^{\frac{{\left( {{E_C} + KT - {E_F}} \right)}}{{KT}}}}}} = 1 - \frac{1}{{1 + {e^{\left( {\frac{{{E_C} + KT - {E_F}}}{{KT}}} \right)}}}}\)
\(\frac{1}{{1 + {e^{\frac{{\left( {{E_C} + KT - {E_F}} \right)}}{{KT}}}}}} = \frac{{{e^{\frac{{\left( {{E_C} + KT - {E_F}} \right)}}{{KT}}}}}}{{1 + {e^{\left( {\frac{{{E_C} + KT - {E_F}}}{{KT}}} \right)}}}}\)
\({e^{\left( {\frac{{{E_C} + KT - {E_F}}}{{KT}}} \right)}} = 1\)
Taking the natural log on both sides, we get:
\(\frac{{{E_C} + KT - {E_F}}}{{KT}} = 0\)
∴ E
F = E
C + KT