Formula used:
VDC = IDCRL
Ripple voltage is calculated as:
\({V_r} = \frac{{{I_{DC}}}}{{{f_o}C}}\)
Ripple factor, r is given by:
\(r = \frac{1}{{2\sqrt 3 {f_o}C{R_L}}}\)
Also, the angle of conduction is:
\(= \sqrt {\frac{{2{V_r}}}{{{V_m}}}} \)
\({V_m} = {V_{DC}} + \frac{{{V_r}}}{2}\)
Calculation:
Given: VDC = 40 V, RL = 2 kΩ, fo = 60 Hz, and C = 680 μf
\({I_{DC}} = \frac{{{V_{DC}}}}{{{R_L}}} = \frac{{40}}{2}mA\)
IDC = 20 mA
Now, the ripple voltage will be”
\({V_r} = \frac{{{I_{DC}}}}{{{f_o}C}} = \frac{{20 \times {{10}^{ - 3}} \times {{10}^6}}}{{60 \times 680}}\)
Vr = 0.49 V
\({V_m} = {V_{DC}} + \frac{{{V_r}}}{2} = 40 + \frac{{0.49}}{2}\)
Vm = 40.24 V
The angle of conduction will now be:
\(\sqrt {\frac{{2{V_r}}}{{{V_m}}}} = \sqrt {\frac{{2 \times 0.49}}{{40.24}}} \)
= 0.156 radian
Duty cycle \(= \frac{{angle\;of\;conduction}}{{2\pi }} \times 100\%\)
\(= \frac{{0.156}}{{2\pi }} \times 100\%\)
= 2.48%
Options 1) & 2) are correct
The Ripple factor for capacitor filler will be:
\(r = \frac{1}{{2\sqrt 3 {f_o}C{R_L}}}\)
\(r \propto \frac{1}{{{R_L}}}\)
For large RL, the ripple factor will be smaller.
Also, since the Peak to peak ripple voltage is:
\({V_r} = \frac{{{I_{DC}}}}{{{f_o}C}}\)
\({V_r} \propto \frac{1}{{{f_o}}}\)
Peak to peak ripple voltage decreases with frequency.
Options 1, 2 & 3 are correct.