Self Studies

Signals and Systems Test 2

Result Self Studies

Signals and Systems Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33

    What will be the numerical value of the following integral?

    \(\mathop \smallint \nolimits_{ - 1}^8 \left[ {\delta \left( {t + 3} \right) - 2\delta \left( {4t} \right)} \right]dt\)

    Solution

    Concept:

    Properties of unit impulse:

    1) \(\delta \left( {at} \right) = \frac{1}{{\left| a \right|}}\delta \left( t \right)\)

    2) \(\mathop \smallint \nolimits_{ - \infty }^\infty \delta \left( {t - a} \right)dt = 1\), for t = a; otherwise 0.

    Analysis:

    For an impulse function, we have:

    \(\mathop \smallint \nolimits_{ - 1}^8 \left[ {\delta \left( {t + 3} \right) - 2\delta \left( {4t} \right)} \right]dt\)

    \( = \mathop \smallint \nolimits_{ - 1}^8 \delta \left( {t + 3} \right)dt - 2\mathop \smallint \nolimits_{ - 1}^8 \delta \left( {4t} \right)dt\)

    \( = 0 - 2\mathop \smallint \nolimits_1^8 \delta \left( {4t} \right)\)

    \(\mathop \smallint \nolimits_{ - 1}^8 \delta \left( {t + 3} \right)dt = 0\) because t = -3 does not exist in the given interval -1 < t < 8

    Since \(\delta \left( {at} \right) = \frac{1}{a}\delta \left( t \right)\), the above can be written as:

    \(= - \frac{2}{4}\mathop \smallint \nolimits_1^8 \delta \left( t \right) = - \frac{1}{2} = - 0.5\)

  • Question 2
    2 / -0.33

    The period of the given signal is:

    \(x\left( n \right) = \sin \left( {\frac{{2\pi }}{5}n} \right) + 3\cos \left( {\frac{{2\pi }}{7}n} \right) + \cos \left( {\frac{{4\pi\;}}{{22}}n + \frac{\pi }{2}} \right)\)
    Solution

    \(\omega \;\left( {Angular\;frequency} \right) = \frac{{2\pi }}{T}\)

    So, \(T= \frac{{2\pi }}{\omega }\)      ---- (1)

    The given signal can be represented as:

    \( \Rightarrow x\left( n \right) = 1 + \sin \left( {{\omega _1}n} \right) + 3\cos \left( {{\omega _2}n} \right) + \cos \left( {{\omega _3}n + \frac{\pi }{2}} \right)\)

    Where \({\omega _1} = \frac{{2\pi }}{5},\;{\omega _2} = \frac{{2\pi }}{7}\;and\;{\omega _3} = \frac{{4\pi }}{{22}}\) 

    Using Equation (1)

     \({T_1} = \frac{{2\pi }}{{2\pi }} \times 5 = 5\)

    \(\;{T_2} = \frac{{2\pi }}{{2\pi }} \times 7 = 7\)

    \({T_3} = \frac{{2\pi }}{{4\pi }} \times 22 = 11\)

    The period of the combination of the given signals is therefore, the LCM [T1, T2, T3], which is = 385

  • Question 3
    2 / -0.33
    Let f(t) be an even periodic signal with time period T and let y(t) be signal defined such that y(t) = f(t + T/4) then which of the following statement is true regarding Fourier series expansion of f(t) and y(t)
    Solution

    Concept:

    1) Fourier Series of Even Signals Contain only Cosine terms

    2) Fourier Series of odd signals contain only sine terms.

    Application:

    Given f(t) is Even Periodic

    Fourier series of f(t) will contain only cosine terms

    For y(t) let us take an example

    Let \(f\left( t \right)=Cos\left( \frac{2\pi }{T}t \right)\)

    Time Period = T

    Let us shift this signal by T/4

    \(y\left( t \right)=cos\left( \frac{2\pi }{T}\left( t+\frac{T}{4} \right) \right)\)

    \(y\left( t \right)=\cos \left( \frac{2\pi t}{\tau }+\frac{\pi }{2} \right)\)

    \(y\left( t \right)-\sin \left( \frac{2\pi t}{T}\right)\)

    y(t) is an Odd function

    Since Fourier series of odd signals contain only sine terms, the Fourier series expansion of y(t) has only sine terms.
  • Question 4
    2 / -0.33
    If \(x\left[ n \right] = cos\left[ {\frac{{3\pi n}}{4}} \right]\) and y[n] = sin (7πn). Then the value of \(\mathop \sum \limits_{n = - \infty }^{ + \infty } x\left[ n \right]y\left[ n \right]\) is__________.
    Solution

    \(x\left[ n \right] = cos\left[ {\frac{{3\pi }}{4}n} \right] = even\;singal\)

    \(y\left[ n \right] = sin\left[ {7\pi n} \right] = odd\;singal\)

    x[n] y[n] = odd signal

    \(\mathop \sum \limits_{n = - \infty }^{ + \infty } x\left[ n \right]y\left[ n \right] = 0\)

  • Question 5
    2 / -0.33

    DFT of a signal f(n) is known to be F(k) = {5, 3 + 6j, -1, 3 - 6j}

    The DFT of the signal f(n - 3) will be:
    Solution

    Concept:

    \(If\;f\left( n \right)\mathop \leftrightarrow \limits^{DFT} F\left( k \right)\)

    \(then\;f\left( {n - {n_0}} \right)\mathop \leftrightarrow \limits^{DFT} F\left( k \right){e^{ - jk.\frac{{2\pi }}{N}.{n_o}}}\)

    Calculation:

    Given f(n) ↔ F(k)

    \(f\left( {n - 3} \right) \leftrightarrow F\left( k \right).{e^{ - jk.\frac{{2\pi }}{N}.3}}\)

    The given DFT is a 4-point DFT. So, N = 4

    \(\therefore f\left( {n - 3} \right) \leftrightarrow F\left( k \right){e^{ - jk.\frac{{2\pi }}{4}.3}}\)

    \(F\left( k \right){e^{ - j\frac{{3\pi k}}{2}}} = F\left( k \right).{j^k}\;\;\left( {{e^{ - j\frac{{3\pi }}{2}}} = j} \right)\)

    F(k) will now become: { 5.j0, (3 + 6j).(j1), -1(j2), (3 – 6j).(j3)}

    = {5, 3j – 6, 1, -6 – 3j}
  • Question 6
    2 / -0.33
    For an LTI system with rational transfer function H(z), which of the following statements is/are true?
    Solution

    Causality:

    A linear time-invariant discrete-time system is said to be causal if the impulse response h[n] = 0, for n < 0 and it is therefore right-sided.

    The ROC of such a system H(z) is the exterior of a circle. If H(z) is rational, then the system is said to be causal if:

    1) The ROC is the exterior of a circle outside the outermost pole; and

    2) The degree of the numerator polynomial of H(z) should be less than or equal to the degree of the denominator polynomial.

    Stability:

    A discrete-time LTI system is said to be BIBO stable if the impulse response h[n] is summable, i.e.

    \(\mathop \sum \nolimits_{n = - \infty }^\infty \left| {h\left[ n \right]} \right| < \infty \)

    z-transform of h[h] is given as:

    \(H\left( z \right) = \mathop \sum \nolimits_{n = - \infty }^\infty h\left[ h \right]{z^{ - n}}\)

    Let z = e (which describes a unit circle in the z-plane), then

    \(\left| {H\left[ {{e^{j{\rm{\Omega }}}}} \right]} \right| = \left| {\mathop \sum \nolimits_{n = - \infty }^\infty h\left[ n \right]{e^{ - j{\rm{\Omega }}n}}} \right|\)

    The above equality can be written as:

    \( \le \;\mathop \sum \nolimits_{n = - \infty }^\infty \left| {h\left[ n \right]{e^{ - j{\rm{\Omega }}n}}} \right|\)

    \(= \mathop \sum \nolimits_{n = - \infty }^\infty \left| {h\left[ n \right]} \right| < \infty \)

    This is the condition for stability. Thus we can conclude that an LTI system is stable if the ROC of the system function H(z) contains the unit circle |z| = 1

    Causality and Stability:

    For a system with rational transfer function H(z) to be causal, the ROC should lie outside the outermost pole, and for BIBO stability, the ROC should include the unit circle |z| = 1. 

    ∴ An LTI discrete-time causal system with the rational system function H(z) is said to be stable if all the poles of H(z) lie inside the unit circle.

  • Question 7
    2 / -0.33
    The energy of the signal x(t) is E/4 . If the signal is shrunk by a factor of 3 along the time scale the energy will now be
    Solution

    Concept:

    The energy of the signal is defined as:

    \(E= \mathop \smallint \limits_{ - \infty }^\infty {x^2}\left( {t} \right)dt\)

    Calculation:

    Given

    \(\frac{E}{4} = \mathop \smallint \limits_{ - \infty }^\infty {x^2}\left( t \right)dt\)

    The signal is shrunk (compressed) by a factor of 3, i.e.

    x'(t) = x(3t)

    The new energy will be:

    \(E' = \mathop \smallint \limits_{ - \infty }^\infty {x^2}\left( {3t} \right)dt\) 

    Taking 3t = u

    3 dt = du

    \(E' = \mathop \smallint \limits_{ - \infty }^\infty {x^2}\left( u \right)\frac{{du}}{3}\)

    \(= \frac{1}{3}\left( {\mathop \smallint \limits_{ - \infty }^\infty {x^2}\left( u \right)du} \right)\)

    \(E'= \frac{1}{3}.\frac{E}{4}=\frac{E}{12}\)

  • Question 8
    2 / -0.33

     Let X(z) be the z-transform of a discrete-time sequence \(x\left( n \right)={{\left( -\frac{1}{2} \right)}^{n}}u\left( n \right)\) 

    Consider another signal y(n) and its z- transform Y(z), given as Y(z) = X (z3). The value of y(n) at n = 4 is ______.
    Solution

    The z-transform of a sequence x(n) is defined as:

    \(X (Z) = \sum_{n =- \infty}^{+ \infty} x(n) \cdot z^{-n}\)

    Now, \(Y(z) = X (z^3) = \sum_{n=- \infty}^\infty x(n) (z^3)^{-n}\)

    \(\Rightarrow Y(z) = X(z^3) = \sum_{n=-\infty}^\infty x(n)z^{-3n}\)

    Let 3n = k

    \(\Rightarrow n=\frac{k}{3}\)

    \(Y(z) =\sum_{k=-\infty}^\infty x\left(\frac{k}{3}\right) z^{-k}\)

    Thus, \(y(n) = x \left(\frac{n}{3}\right)\)

    \(y\left( n \right)=\left\{ \begin{matrix} ~x\left( n \right), \\ 0, \\\end{matrix} \right.\begin{matrix} ~n=0,3,6,-- \\ otherwise \\\end{matrix}\)

    So, y(n) at n = 4 is 0.

  • Question 9
    2 / -0.33
    The percentage of total energy in the signal \(f\left( t \right) = {e^{ - t}}u\left( t \right)\) contained in the frequency band |ω| < 5 rad/sec is ________.
    Solution

    Concept:

    The energy of a continuous-time signal is defined as:

    \({E_{x\left( t \right)}} = \mathop {\lim }\limits_{T \to \infty } \mathop \smallint \limits_{ - T}^T {\left| {x\left( t \right)} \right|^2}dt\)

    Also, the Parseval's Power theorem states that:

    \(\mathop \smallint \limits_{ - \infty }^\infty {\left| {x\left( t \right)} \right|^2}dt = \frac{1}{{2\pi }}\mathop \smallint \limits_{ - \infty }^\infty {\left| {X\left( \omega \right)} \right|^2}d\omega \)

    And, If x(t) having Fourier transform as X(f)

    \(\mathop \smallint \limits_{ - \infty }^\infty {\left| {x\left( t \right)} \right|^2}dt = \mathop \smallint \limits_{ - \infty }^\infty {\left| {X\left( f \right)} \right|^2}df\)

    Calculation:

    f(t) = e-t u(t)

    \({E_f}\left( t \right) = \mathop \smallint \limits_{ - \infty }^\infty {\left| {f\left( t \right)} \right|^2}dt = \mathop \smallint \limits_0^\infty {\left( {{e^{ - t}}} \right)^2}dt\)

    \(= \frac{1}{2} = 0.5\)

    The energy (Ef) for |ω| ≤ 5 will be:

    \( = \frac{1}{{2\pi }}\;\mathop \smallint \limits_{ - 5}^5 \frac{1}{{1 + {ω ^2}}}dω \)

    \( = \frac{1}{{2\pi }}\left( {{{\tan }^{ - 1}}ω } \right)_{ - 5}^5 \)

    \(= \frac{2}{{2\pi }}\left( {{{\tan }^{ - 1}}ω } \right)_0^5\)

    \( = \frac{1}{\pi }\left( {{{\tan }^{ - 1}}5 - {{\tan }^{ - 1}}0} \right)\)

    \(= \frac{{1.37}}{\pi } = 0.437\)

    Percentage of energy contained will be:

    \( = \frac{{0.437}}{{0.5}} \times 100\)

    = 87.433%

  • Question 10
    2 / -0.33

    Consider a periodic signal x(t) whose Fourier series coefficient is defined as below

    \({c_n} = \left\{ {\begin{array}{*{20}{c}} {2\;\;\;\;\;\;\;,\;\;\;\;\;\;\;\;n = 0}\\ {j{{\left( {\frac{1}{2}} \right)}^{\left| n \right|}},\;\;\;otherwise} \end{array}} \right.\)

    Which of the following conclusions is/are true?

    Solution

    Concept:

    Properties of Fourier series coefficient:

    1) If x(t) is real, then the Fourier series coefficient satisfies the condition:

    \({c_n} = c_{ - n}^*\) (* denotes conjugate)

    2) If x(t) is even, then:

    cn = c-n

    3) Fourier series coefficient of \(\frac{{dx\left( t \right)}}{{dt}}\) is given by:

    \(\frac{{dx\left( t \right)}}{{dt}}\mathop \leftrightarrow \limits^{C.T.F.S} jn\frac{{2\pi }}{{{T_0}}} \cdot {c_n}\)

    Application:

    Given:

    \({c_n} = \left\{ {\begin{array}{*{20}{c}} {2,\;\;\;\;\;\;\;,\;\;\;\;\;\;\;\;\;~n = 0}\\ {j{{\left( {\frac{1}{2}} \right)}^{\left| n \right|}},\;\;\;\;otherwise} \end{array}} \right.\)

    c-n will be defined as:

    \(c_{ - n}^* = \left\{ {\begin{array}{*{20}{c}} {2\;\;\;\;\;\;\;\;\;,\;\;\;\;\;\;n = 0}\\ { - j{{\left( {\frac{1}{2}} \right)}^{\left| n \right|}},\;\;\;\;otherwise} \end{array}} \right.\)

    Since \({c_n} \ne c_{ - n}^*\)x(t) is not real.

    Also, we observe that cn = c-n.

    ∴ The function x(t) is even.

    \(x\left( t \right) \leftrightarrow {c_n}\)

    \(\frac{{dx\left( t \right)}}{{dt}}\mathop \leftrightarrow \limits^{C.T.F.S} c_n' = jn\frac{{2\pi }}{{{T_0}}} \cdot {c_n}\)

    \(c_n' = \left\{ {\begin{array}{*{20}{c}} {0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;,\;\;\;\;\;\;n = 0}\\ { - n{{\left( {\frac{1}{2}} \right)}^{\left| n \right|}}.\frac{{2\pi }}{{{T_0}}}\;\;,\;\;\;\;otherwise} \end{array}} \right.\)

    We observe that \(c_n' \ne c_{ - n}'\)

    \(\therefore y\left( t \right) = \frac{{dx\left( t \right)}}{{dt}}\) is not even.

  • Question 11
    2 / -0.33
    An LTI system described by \(H\left( s \right) = \frac{1}{{{s^2} + 3s + 1}}\) Find the system response for the Input x(t) = 2cos (2t + 25°)
    Solution

    Given  \(H\left( s \right) = \frac{1}{{{s^2} + 3s + 1}}\)

    Put S = j2

    \(\begin{array}{l} \left| {H\left( {2j} \right)} \right| = \frac{1}{{ - 4 + 6j + 1}} = \frac{1}{{ - 3 + 6j}} = \frac{1}{{\sqrt {9 + 36} }} = \frac{1}{{\sqrt {45} }}\\ \angle H\left( {j2} \right) = -180+ ta{n^{ - 1}}\left( {\frac{6}{{ 3}}} \right) = -116.56^\circ \end{array}\)  

    yss(t) = 2 |H(2j)| cos [2t + 25 + ∠H(j2)]

    \(= \frac{2}{{\sqrt {45} }}\cos \left( {2t + 25 -116.56^\circ } \right)\)

    = 0∙3 cos (2t - 91.56)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now