Concept:
Properties of Fourier series coefficient:
1) If x(t) is real, then the Fourier series coefficient satisfies the condition:
\({c_n} = c_{ - n}^*\) (* denotes conjugate)
2) If x(t) is even, then:
cn = c-n
3) Fourier series coefficient of \(\frac{{dx\left( t \right)}}{{dt}}\) is given by:
\(\frac{{dx\left( t \right)}}{{dt}}\mathop \leftrightarrow \limits^{C.T.F.S} jn\frac{{2\pi }}{{{T_0}}} \cdot {c_n}\)
Application:
Given:
\({c_n} = \left\{ {\begin{array}{*{20}{c}} {2,\;\;\;\;\;\;\;,\;\;\;\;\;\;\;\;\;~n = 0}\\ {j{{\left( {\frac{1}{2}} \right)}^{\left| n \right|}},\;\;\;\;otherwise} \end{array}} \right.\)
c-n will be defined as:
\(c_{ - n}^* = \left\{ {\begin{array}{*{20}{c}} {2\;\;\;\;\;\;\;\;\;,\;\;\;\;\;\;n = 0}\\ { - j{{\left( {\frac{1}{2}} \right)}^{\left| n \right|}},\;\;\;\;otherwise} \end{array}} \right.\)
Since \({c_n} \ne c_{ - n}^*\), x(t) is not real.
Also, we observe that cn = c-n.
∴ The function x(t) is even.
\(x\left( t \right) \leftrightarrow {c_n}\)
\(\frac{{dx\left( t \right)}}{{dt}}\mathop \leftrightarrow \limits^{C.T.F.S} c_n' = jn\frac{{2\pi }}{{{T_0}}} \cdot {c_n}\)
\(c_n' = \left\{ {\begin{array}{*{20}{c}} {0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;,\;\;\;\;\;\;n = 0}\\ { - n{{\left( {\frac{1}{2}} \right)}^{\left| n \right|}}.\frac{{2\pi }}{{{T_0}}}\;\;,\;\;\;\;otherwise} \end{array}} \right.\)
We observe that \(c_n' \ne c_{ - n}'\)
\(\therefore y\left( t \right) = \frac{{dx\left( t \right)}}{{dt}}\) is not even.