The state-space representation of the system is
\(\left[ {\begin{array}{*{20}{c}} {{{\dot x}_1}}\\ {{{\dot x}_2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - \frac{1}{{{T_1}}}}&0\\ 0&{ - \frac{1}{{{T_2}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {\frac{1}{{{T_1}}}}\\ {\frac{1}{{{T_2}}}} \end{array}} \right]\)
Comparing it to the standard state-space model, we have the matrices:
\(A = \left[ {\begin{array}{*{20}{c}} { - \frac{1}{{{T_1}}}}&0\\ 0&{ - \frac{1}{{{T_2}}}} \end{array}} \right]\;and\;B = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{{T_1}}}}\\ {\frac{1}{{{T_2}}}} \end{array}} \right]\)
\(AB = \left[ {\begin{array}{*{20}{c}} { - \frac{1}{{{T_1}}}}&0\\ 0&{ - \frac{1}{{{T_2}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{{T_1}}}}\\ {\frac{1}{{{T_2}}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - \frac{1}{{T_1^2}}}\\ { - \frac{1}{{T_2^2}}} \end{array}} \right]\)
So, the controllability matrix is:
\({C_M} = \left[ {B\;AB} \right] = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{{T_1}}}}&{ - \frac{1}{{T_1^2}}}\\ {\frac{1}{{{T_2}}}}&{ - \frac{1}{{T_2^2}}} \end{array}} \right]\)
For complete state controllability, the matrix CM must be of rank r = 2, i.e.
|CM| ≠ 0
\(\left| {\begin{array}{*{20}{c}} {\frac{1}{{{T_1}}}}&{ - \frac{1}{{T_1^2}}}\\ {\frac{1}{{{T_2}}}}&{ - \frac{1}{{T_2^2}}} \end{array}} \right| \ne 0\)
\(- \frac{1}{{{T_1}T_2^2}} + \frac{1}{{{T_2}T_1^2}} \ne 0\)
\(\frac{1}{{{T_1}{T_2}}}\left( {\frac{1}{{{T_1}}} - \frac{1}{{{T_2}}}} \right) \ne 0\)
\(\frac{1}{{{T_1}{T_2}}}\left( {\frac{{{T_2} - {T_1}}}{{{T_1}{T_2}}}} \right) \ne 0\)
\(\frac{{\left( {{T_2} - {T_1}} \right)}}{{{{\left( {{T_1}{T_2}} \right)}^2}}} \ne 0\)
(T2 – T1) ≠ 0 or T1 ≠ T2
Therefore, the system is completely state controllable for T1 ≠ T2.