Self Studies

Control Systems Test 1

Result Self Studies

Control Systems Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33

    Consider the transfer function given below.

    \(T\left( s \right) = \frac{{{K_1}s + {K_2}}}{{{s^4} + {K_1}{s^3} + {s^2} + {K_2}s + 1}}\)

    What is the constraints on K1 and K2 such that the function will have only two poles on jω-axis?
    Solution

    The characteristic equation of the system is:

    s4 + K1s3 + s2 + K2 s + 1 = 0

    For the characteristic equation, we form the Routh’s array as:

    s4

    1

    1

    1

    s3

    K1

    K2

     

    s2

    \(\frac{{{K_1} - {K_2}}}{{{K_1}}}\)

     

     

    s1

    \(\frac{{K_1^2 - {K_1}{K_2} + K_2^2}}{{{K_2} - {K_1}}}\)

     

     

    s0

    1

     

     

     

    For the system having two imaginary poles, the required condition is:

    \(K_1^2 - {K_1}{K_2} + K_2^2 = 0\)  

    But the above equation has no real roots, so there is no relationship between K1 and K2 that will yield just two jω-poles. 

  • Question 2
    2 / -0.33
    The steady state response c(t) for an input r(t) = √2 sin2t to a system transfer function \(\frac{1}{s+4}\)is
    Solution

    Input = √2 sin 2t

    ω = 2 rad/sec

    Given:

    \(G\left( s \right)=\frac{1}{s+4}\)

    Replacing s with jω, we can write:

    \(G\left( jω \right)=\frac{1}{jω +4}\)

    \(\left| G\left( jω \right) \right|=\frac{1}{\sqrt{{{ω }^{2}}+16}}=\frac{1}{\sqrt{20}}\)

    \(\angle (G\left( jω \right)={{\tan }^{-1}}\left( \frac{ω }{4} \right)=26.5{}^\circ\)

    Now, the output will be:

    \(=\sqrt{2}\times \frac{1}{\sqrt{20}}\sin \left( ω t-26.5{}^\circ \right)\)

    \(=0.316\sin \left( ω t-26.5{}^\circ \right)\)

  • Question 3
    2 / -0.33
    A proportional band of a PI controller is 40% and the reset time is 0.25s. The transfer function of the controller is given by
    Solution

    The standard transfer function of a PI controller is

    \(T\left( s \right) = {K_p} + \frac{{{K_I}}}{s} = {K_p}\;\left( {1 + \frac{1}{{{T_I}s}}} \right)\)

    Where \({T_I} = \frac{{{K_p}}}{{{k_I}}}\) is known as integral or reset time.

    Proportional band \(\left( {PB} \right) = \frac{{100}}{{{K_p}}}\)

    The transfer function of PI controller is

    \(T\left( s \right) = 2.5\;\left( {1 + \frac{1}{{0.25s}}} \right)\)

    \(= 2.5\;\left( {1 + \frac{4}{s}} \right)\)

  • Question 4
    2 / -0.33
    An LTI system is governed by y ‘’(t) + 16y' (t) + 15y (t) = x’(t) + 5x(t) the steady state value of the unit step response is ________.
    Solution

    Concept

    The steady-state value of the output can be calculated using final value theorem

    \(\mathop {{\rm{lt}}}\limits_{s \to 0} s\left[ {y\left( s \right)} \right]\)

    \(x\left( t \right)\mathop \to \limits^{L.T} s\;X\left( s \right)\)

    \(u\left( t \right)\mathop \to \limits^{L.T} \frac{1}{s}\)

    Applications:

    \({s^2}\;Y\left( s \right) + \;16\;sY\left( s \right)\; + \;15\;Y\left( s \right)\; = 1 + \frac{5}{s}\)

    \(\left( {{s^2} + 16s + 15} \right)Y\left( s \right) = 1 + \frac{5}{s}\)

    \(Y\left( S \right) = \frac{{s + 5}}{{s\left( {{s^2}+16s + 15} \right)}}\)

    The steady-state value

    \(\mathop {\lim }\limits_{S \to 0} \frac{{s\left( {s + 5} \right)}}{{s\left( {{s^2} + 16s + 15} \right)}} = \frac{1}{3}\)

  • Question 5
    2 / -0.33

    The state variable description of an LTI system is given below.

    \({\dot x_1} = - \frac{1}{{{T_1}}}{x_1} + \frac{1}{{{T_1}}}u\)

    \({\dot x_2} = - \frac{1}{{{T_2}}}{x_2} + \frac{1}{{{T_2}}}u\)

    y = x1

    where y is the output and u is the input. The system is complete state controllable for
    Solution

    The state-space representation of the system is

    \(\left[ {\begin{array}{*{20}{c}} {{{\dot x}_1}}\\ {{{\dot x}_2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - \frac{1}{{{T_1}}}}&0\\ 0&{ - \frac{1}{{{T_2}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {\frac{1}{{{T_1}}}}\\ {\frac{1}{{{T_2}}}} \end{array}} \right]\)

    Comparing it to the standard state-space model, we have the matrices:

    \(A = \left[ {\begin{array}{*{20}{c}} { - \frac{1}{{{T_1}}}}&0\\ 0&{ - \frac{1}{{{T_2}}}} \end{array}} \right]\;and\;B = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{{T_1}}}}\\ {\frac{1}{{{T_2}}}} \end{array}} \right]\)

    \(AB = \left[ {\begin{array}{*{20}{c}} { - \frac{1}{{{T_1}}}}&0\\ 0&{ - \frac{1}{{{T_2}}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{{T_1}}}}\\ {\frac{1}{{{T_2}}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - \frac{1}{{T_1^2}}}\\ { - \frac{1}{{T_2^2}}} \end{array}} \right]\)

    So, the controllability matrix is:

    \({C_M} = \left[ {B\;AB} \right] = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{{T_1}}}}&{ - \frac{1}{{T_1^2}}}\\ {\frac{1}{{{T_2}}}}&{ - \frac{1}{{T_2^2}}} \end{array}} \right]\)

    For complete state controllability, the matrix CM must be of rank r = 2, i.e.

    |CM| ≠ 0

    \(\left| {\begin{array}{*{20}{c}} {\frac{1}{{{T_1}}}}&{ - \frac{1}{{T_1^2}}}\\ {\frac{1}{{{T_2}}}}&{ - \frac{1}{{T_2^2}}} \end{array}} \right| \ne 0\)

    \(- \frac{1}{{{T_1}T_2^2}} + \frac{1}{{{T_2}T_1^2}} \ne 0\)

    \(\frac{1}{{{T_1}{T_2}}}\left( {\frac{1}{{{T_1}}} - \frac{1}{{{T_2}}}} \right) \ne 0\)

    \(\frac{1}{{{T_1}{T_2}}}\left( {\frac{{{T_2} - {T_1}}}{{{T_1}{T_2}}}} \right) \ne 0\)

    \(\frac{{\left( {{T_2} - {T_1}} \right)}}{{{{\left( {{T_1}{T_2}} \right)}^2}}} \ne 0\)

    (T2 – T1) ≠ 0 or T1 ≠ T2

    Therefore, the system is completely state controllable for T1 ≠ T2.

  • Question 6
    2 / -0.33

    The state space representation of an LTI system has \(A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 2&1 \end{array}} \right]\)

    Which among the following can represent the same system
    Solution

    The given system has characteristic equation given by: |sI - A| = 0

    \(\Rightarrow \left| {\begin{array}{*{20}{c}} {s - 1}&{ - 2}\\ { - 2}&{s - 1} \end{array}} \right| = 0\)

    ⇒ (s - 1)2 = 4

    s = +3, -1

    The system has poles at s = 3 and s = -1

    For option (d)

    The position of poles from characteristic equation:

    \(\left| {\begin{array}{*{20}{c}} {s - 27}&{42}\\ { - 16}&{s + 25} \end{array}} \right| = 0\)

    (s – 27) (s + 25) + (16) (42) = 0

    s2 – 2s – 675 + 672 = 0

    s2 – 2s – 3 = 0

    s = +3, -1
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now