Concept:
If a > b then the dominant mode of the rectangular waveguide is TE10
TM0n, TMm0, TM00 modes are not possible in a rectangular waveguide.
The cut-off frequency in the rectangular waveguide is given as:
\({{f}_{c}}=\frac{v}{2}\sqrt{{{\left( \frac{m}{a} \right)}^{2}}+{{\left( \frac{n}{b} \right)}^{2}}}\)
Where a and b are the dimensions of the rectangular waveguide and m and n are half-cycle variations in the x and y directions respectively.
\(v=\frac{1}{\sqrt{\mu \epsilon }}=\frac{c}{\sqrt{{{\mu }_{r}}{{\epsilon }_{r}}}}\) c is the velocity of light
Calculation:
1) When filled with air:
\({{f}_{c}}=\frac{v}{2}\sqrt{{{\left( \frac{m}{a} \right)}^{2}}+{{\left( \frac{n}{b} \right)}^{2}}}\)
\(=\frac{3\times {{10}^{8}}}{2a}~\sqrt{{{m}^{2}}+\left( \frac{{{a}^{2}}}{{{b}^{2}}} \right){{n}^{2}}}\)
\(=6\sqrt{{{m}^{2}}+6.25~{{n}^{2}}}\) GHz
f < 9 GHz
For TE modes
TE01, fc = 15 GHz
∴ TE0n modes will not propagate.
TE10, fc = 6 GHz
TE20, fc = 12 GHz
∴ only TE10 mode will propagate
TE11, fc = 16.15 GHz
∴ no TEmn where m≠0 and n≠0 will propagate
For TM modes:
TM11, fc = 16.15 GHz
∴ no TM mode will propagate
Total 1 TE mode and 0 TM mode.
2) When filled with the material:
\({{f}_{c}}=\frac{v}{2}\sqrt{{{\left( \frac{m}{a} \right)}^{2}}+{{\left( \frac{n}{b} \right)}^{2}}}\)
\(=\frac{3\times {{10}^{8}}}{4a}~\sqrt{{{m}^{2}}+\left( \frac{{{a}^{2}}}{{{b}^{2}}} \right){{n}^{2}}}\)
\(=3\sqrt{{{m}^{2}}+6.25~{{n}^{2}}}\) GHz
f < 9 GHz
For TE modes:
TE01, fc = 7.5 GHz
TE02, fc = 15 GHz
∴ TE01 mode will only propagate.
TE10, fc = 3 GHz
TE20, fc = 6 GHz
TE30, fc = 9 GHz
∴ only TE10 and TE20 modes will propagate
TE11, fc = 8.078 GHz
TE12, fc = 15.3 GHz
TE21, fc = 9.6 GHz
∴ only TE11 mode will propagate
Similarly, for TM modes:
TM11, fc = 8.078 GHz
∴ only TM11 mode will propagate
Total 4 TE mode and 1 TM mode.