Self Studies

Electromagnetics Test 6

Result Self Studies

Electromagnetics Test 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Which of the following statements is/are correct for antenna arrays:

    Solution

    For an antenna array:

    ψ = βd cos θ + α

    For nulls:

    \(\frac{{N\psi }}{2} = \pm k\pi ,\;k = 1,2,3 \ldots\)

    For broadside array:

    \(\left( {\cos {\phi _{null}} - \cos {\phi _{max}}} \right)\frac{{\beta d}}{2} = \pm \frac{{k\pi }}{N}\)

    The Beamwidth between first nulls for a broadside long array is given by:

    \(\frac{{2\lambda }}{{nd}}\)

    For an ordinary end-fire long array, the Beamwidth is given by:

    \(\sqrt {\frac{2\lambda }{{nd}}}\)

  • Question 2
    1 / -0
    If a dipole Antenna has a radiation resistance of 73 ohm, The loss resistance of 7 ohm and the power gain is 16. Then the directivity is:
    Solution

    Concept:

    Power Gain of an Antenna is given as:

    G = η D 

    Where;

    η = efficiency and ‘D’ is the Directivity

    \(\eta = \frac{{{R_{rad}}}}{{{R_{rad}} + {R_{loss}}}}\)

    Rrad = Radiation Resistance and

    Rloss = Loss Resistance.

    Calculation:

    Given:

    Rrad = 73 ohm

    Rloss = 7 ohm

    G = 16

    G = η D

    \(D = \frac{G}{\eta } = \frac{G}{{{R_{rad}}}}\left( {{R_{rad}} + {R_{loss}}} \right) \)

    \(D= \frac{{16 × \left( {73 + 7} \right)}}{{73}}\)

    D = 16 × 1.095

    D = 17.53

  • Question 3
    1 / -0

    The Radiation resistance of a small loop antenna is given by

    \({R_{rad}} = \frac{{320{\pi ^4}{S^2}}}{{{\lambda ^4}}}\) , where S = Area = Nπr2 (for n turns)

    If the radius of the loop is halved, keeping all other parameters same, then the percentage change in radiation resistance is ________%.
    Solution

    S = Area = Nπr2

    When loop radius is halved

    \(S' = N\pi {\left( {\frac{r}{2}} \right)^2} = \frac{S}{4}\) 

    The loop area becomes one-fourth

    \({R_{rad}} = \frac{{320{\pi ^4}{S^2}}}{{{\lambda ^4}}}\) 

    Taking log

    Log (Rrad) = log(320π4) - log(λ4) - log(S2)

    Differentiating:

    \(\frac{{d{R_{rad}}}}{{{R_{rad}}}} = - \frac{1}{{{S^2}}} \times \left( {2s} \right)dS\) 

    \(\frac{{d{R_{rad}}}}{{{R_{rad}}}} = - \frac{2}{s}\left( {ds} \right)\) 

    \(\frac{{d{R_{rad}}}}{{{R_{rad}}}} = - \frac{2}{s}\left( {\frac{s}{4} - s} \right)\) 

    \(= - \frac{2}{s}\left( { - \frac{{3s}}{4}} \right)\) 

    \(\frac{{d{R_{rad}}}}{{{R_{rad}}}} = \frac{3}{2} = 1.5\) 

    Percentage change = 1.5 × 100% = 150%
  • Question 4
    1 / -0

    A monopole antenna on a large ground plane has a far field pattern function given by

    \({F_\theta }\left( {\theta ,\phi } \right) = \left\{ {\begin{array}{*{20}{c}}{A\sin \theta }&{0 \le \theta \le 90^\circ }\\0&{90^\circ \le \theta \le 180^\circ }\end{array}} \right.\) 

    The directivity of the antenna (in dB) is _________.

    Solution

    Concept:

    \(D = \frac{{4\pi F_{max}^2}}{{\mathop \smallint \nolimits_{\theta = 0}^\pi \mathop \smallint \nolimits_{\phi = 0}^{2\pi } F_\theta ^2\left( {\theta ,\;\phi } \right)\sin \theta d\theta d\phi }}\) 

    Calculation:

    Fmax = A

    \(D = \frac{{4\pi {A^2}}}{{\mathop \smallint \nolimits_{\theta = 0}^{\frac{\pi }{2}} \mathop \smallint \nolimits_{\phi = 0}^{\frac{\pi }{2}} {A^2}\sin \theta \sin \theta d\theta d\phi }}\) 

    \(D = \frac{{4\pi }}{{\mathop \smallint \nolimits_{\phi = 0}^{2\pi } d\phi \mathop \smallint \nolimits_{\theta = 0}^{\frac{\pi }{2}} {{\sin }^3}d\theta }} = \frac{{4\pi }}{{\left( {2\pi } \right)\left( {\frac{2}{3}} \right)}}\) 

    D = 3

    Convert to dB

    D = 10 log (3) = 4.77 dB

  • Question 5
    1 / -0
    Two communication antennas A and B, one operating at 300 MHz and other at 3 GHz respectively and having the same gain, are illuminated with identical flux density of -100 dBW/m2. What is the relation between the received powers (PA: PB)?
    Solution

    Concept:

    Received power in an antenna is given by:

    Pr = [Pavg. Flux density].[Ae]

    where,

    Ae = Effective aperture of the antenna given by

    \({{A}_{e}}=\frac{{{\lambda }^{2}}}{4\pi }.G\)

    G = gain of the antenna.

    λ = operating wavelength.

    Calculation:

    Given the gain of both antennas are same;

    So, \({{A}_{e}}\propto {{\lambda }^{2}}\propto \frac{1}{{{f}^{2}}}\)

    Flux illuminated is identical;

    i.e. Pr ∝ Ae

    so, \({{P}_{r}}\propto \frac{1}{{{f}^{2}}}\)

    ∴ we can write, ⇒ PrAfA2 = PrB. fB2

    \(\Rightarrow \frac{{{P}_{rA}}}{{{P}_{rB}}}=\frac{f_{B}^{2}}{f_{A}^{2}}\)

    Putting values,

    \(\Rightarrow \frac{{{P}_{rA}}}{{{P}_{rB}}}={{\left( \frac{3\times {{10}^{9}}}{3\times {{10}^{8}}} \right)}^{2}}={{\left( 10 \right)}^{2}}=100\)

    \(\frac{{{P}_{A}}}{{{P}_{B}}}=\frac{100}{1}\)

    Option (4) is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now