Concept:
For a MOSFET in saturation, the current is given by:
\({I_{D\left( {sat} \right)}} = \frac{{W{μ _x}{C_{ox}}}}{{2L}}{\left( {{V_{GS}} - {V_{th}}} \right)^2}\)
W = Width of the Gate
Cox = Oxide Capacitance
μ = Mobility of the carrier
L = Channel Length
Vth = Threshold voltage
The transconductance of a MOSFET is defined as the change in drain current(ID) with respect to the corresponding change in gate voltage (VGS), i.e.
\({g_m} = \frac{{\partial {I_D}}}{{\partial {V_{GS}}}}\)
\(g_m = \frac{{W{μ _x}{C_{ox}}}}{{L}}{\left( {{V_{GS}} - {V_{th}}} \right)}\)
Application:
Given:
\(g_{m1} = (\mu_x C_{ox})(\frac{{W}}{{L}})_1{\left( {{V_{GS}} - {V_{th}}} \right)}_1\)
Since the transistor current for both the cases is the same:
ID(sat)1 = ID(sat)2
\(\frac{{μ _x}{C_{ox}}}{2}(\frac{{W}}{{L}})_1{\left( {{V_{GS}} - {V_{th}}} \right)_1^2}=\frac{{μ _x}{C_{ox}}}{2}(\frac{{W}}{{L}})_2{\left( {{V_{GS}} - {V_{th}}} \right)_2^2}\)
Given:
\((\frac{W}{L})_2=2(\frac{W}{L})_1\) ---(1)
\(\frac{{μ _x}{C_{ox}}}{2}(\frac{{W}}{{L}})_1{\left( {{V_{GS}} - {V_{th}}} \right)_1^2}=\frac{{μ _x}{C_{ox}}}{2}(\frac{{2W}}{{L}})_1{\left( {{V_{GS}} - {V_{th}}} \right)_2^2}\)
\((V_{GS}-V_{th})_2=\frac{(V_{GS}-V_{th})_1}{√2}\)
Now, the new transconductance will be:
\(g_{m2} = (\mu_x C_{ox})(\frac{{W}}{{L}})_2{\left( {{V_{GS}} - {V_{th}}} \right)}_2\)
\(g_{m2} = (\mu_x C_{ox})(\frac{2{W}}{{L}})_1\frac{{\left( {{V_{GS}} - {V_{th}}} \right)}_1}{√2}\) ---(2)
Using Equation (1) and (2), we can write:
\(g_{m2} = \sqrt2(\mu_x C_{ox})(\frac{{W}}{{L}})_1{\left( {{V_{GS}} - {V_{th}}} \right)}_1\)
∴ gm2 = √2 gm1