Self Studies

Signals and Systems Test 1

Result Self Studies

Signals and Systems Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of the Integral \(\mathop{\int }_{-5}^{1}7{{e}^{{{t}^{2}}}}\cos t\delta \left( t-2 \right)dt\) is _________.
    Solution

    Concept:

    \(\mathop{\int }_{c}^{d}f\left( t \right)\delta \left( t-a \right)dt=\left\{ \begin{matrix} \begin{matrix} f\left( a \right) & c<a<d \\ \end{matrix} \\ \begin{matrix} 0 & ~~~~~~otherwise \\ \end{matrix} \\ \end{matrix} \right.\)

    Calculation:

    \(f\left( t \right)=7{{e}^{{{t}^{2}}}}\delta \left( t-2 \right)\) is out of the limit of the integral (-5, 1)

    Hence \(\mathop{\int }_{-5}^{1}f\left( t \right)\delta \left( t-2 \right)dt=0\)
  • Question 2
    1 / -0
    If a signal and its even part is x[n] and xe[n] respectively, then which out of the following relation must be true
    Solution

    We know that, x[n] = xe[n] + x0[n]

    x0[n] is the odd part of the signal

    xe[n] is the even part of the signal

    We can write:

    \( \mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right] = \mathop \sum \limits_{n = - \infty }^\infty {x_e}\left[ n \right] + \mathop \sum \limits_{n = - \infty }^\infty {x_o}\left[ n \right]\)   ---(1)

    The summation of the odd part can be written as:

    \(\\ \mathop \sum \limits_{n = - \infty }^\infty {x_o}\left[ n \right] = \mathop \sum \limits_{n = - \infty }^0 {x_o}\left[ n \right] + \mathop \sum \limits_{n = 0}^\infty {x_o}\left[ n \right]\)

    Since x0(-n) = - x0(n), the above equation can be written as:

    \( = \mathop \sum \limits_{n = - \infty }^0 - {x_o}\left[ n \right] + \mathop \sum \limits_{n = 0}^\infty {x_o}\left[ n \right]\)

    \( = - \mathop \sum \limits_{n = 0}^\infty {x_o}\left[ n \right] + \mathop \sum \limits_{n = 0}^\infty {x_o}\left[ n \right] = 0\)

    Equation (1) now becomes:

    \(\mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right] = \mathop \sum \limits_{n = - \infty }^\infty {x_e}\left[ n \right]\)

  • Question 3
    1 / -0
    A discrete time signal is given as \(f\left( n \right) = \sin \left( {\frac{{n\pi }}{3}} \right)\left[ {u\left( n \right) - u\left( {n - 4} \right)} \right]\). The energy of the signal is_____W (Correct up to two decimal places)
    Solution

    Signal energy is given by:

    \(E = \mathop \sum \limits_{n = - \infty }^\infty {\left[ {f\left( n \right)} \right]^2}\)

    \(= \mathop \sum \limits_{n = - \infty }^\infty [\sin \left( {\frac{{n\pi }}{3}} \right).\left[ {u\left( n \right) - u\left( {n - 4} \right)} \right]]^2\)

    \(u\left( n \right) - u\left( {n - 4} \right) = \left\{ {\begin{array}{*{20}{c}} 1&{0 \le n \le 3}\\ 0&{else\;where} \end{array}} \right.\)

    \(E = \mathop \sum \limits_{n = 0}^3 {\left[ {\sin \frac{{n\pi }}{3}\left( 1 \right)} \right]^2} \)

    \(E= \mathop \sum \limits_{n = 0}^3 {\sin ^2}\left( {\frac{{n\pi }}{3}} \right)\)

    \(E= {\sin ^2}\left( {\frac{{(0)\pi }}{3}} \right)+{\sin ^2}\left( {\frac{{(1)\pi }}{3}} \right)+{\sin ^2}\left( {\frac{{(2)\pi }}{3}} \right)+{\sin ^2}\left( {\frac{{(3)\pi }}{3}} \right)\)

    \(= 0 + {\left( {\frac{{\sqrt 3 }}{2}} \right)^2} + {\left( {\frac{{\sqrt 3 }}{2}} \right)^2} + 0 \)

    \(E= \frac{3}{4} + \frac{3}{4} = 1.5\)

  • Question 4
    1 / -0

    Consider the signal \(x\left( t \right) = \cos \frac{{2{\rm{\pi }}}}{3}t + 2\sin \frac{{16\pi }}{3}t\)

    y(t) = sin π t

    The Period of the signal x(t) y(t) is ___________

    Solution

    let z(t) = x(t) y(t)

    \(z\left( t \right) = \cos \frac{{2\pi }}{3}t\sin \pi t + 2\sin \frac{{16\pi }}{3}t\sin \pi t\)

    2 sinA cos B = sin (A + B) + sin (A - B)

    2 sinA SinB = cos (A - B) – cos (A + B)

    \(\frac{1}{2}\left( {Sin\;\left( {\pi + \frac{{2\pi }}{3}} \right)t + \sin \left( {\pi - \frac{{2\pi }}{3}} \right)t} \right) + Cos\;\left( {\frac{{16\pi }}{3} - \pi } \right)t - \cos \left( {\frac{{16\pi }}{3} + \pi } \right)t\)

    \(= \frac{1}{2}\sin \frac{{5\pi }}{3}t + \frac{1}{2}\sin \frac{\pi }{3}t + \cos \frac{{13\pi }}{3}t - \cos \left( {\frac{{19\pi }}{3}} \right)t\)

    \({T_1} = \frac{{2\pi }}{{5\pi }} \times 3 = \frac{6}{5}\)

    \({T_2} = \frac{{2\pi }}{\pi } \times 3 = 6\)

    \({T_3} = \frac{{2\pi }}{{13\pi }} \times 3 = \frac{6}{{13}}\)

    \({T_4} = \frac{{2\pi }}{{19\pi }} \times 3 = \frac{6}{{19}}\)

    \(LCM = \left( {\frac{6}{5},\frac{6}{1},\frac{6}{{13}},\frac{6}{{19}}} \right)\)

    \(= \frac{{LCM\;\left( {6,\;6,6,6} \right)}}{{HCF\left( {5,\;1,\;13,19} \right)}} = 6\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now