Self Studies

Signals and Systems Test 2

Result Self Studies

Signals and Systems Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The Fourier series coefficient for the periodic signal x(t) = sin2t is
    Solution

    Concept:

    For a given Fourier series coefficient cn, the signal is given by:

    \(x\left( t \right) = \mathop \sum \limits_{n = - \infty }^\infty {c_n}{e^{jn{\omega _0}t}}\)

    Expanding the above, we can write:

    \(x\left( t \right) = \ldots + {c_{ - 1}}{e^{ - j{\omega _0}t}} + {c_0} + {c_1}{e^{j{\omega _0}t}} + \ldots \) 

    ω0 = fundamental frequency

    For ω0 = 2, the above expansion can be written as:

    \(x\left( t \right) = \ldots + {c_{ - 1}}{e^{ - j2t}} + {c_0} + {c_1}{e^{j2t}} + \ldots \)    ---(1)

    Application:

    \({\sin ^2}t = \frac{1}{2} - \frac{{\cos 2t}}{2}\)

    ∴ The fundamental period of sin2 t will be:

    \({T_0} = \frac{{2\pi }}{2} = \pi \) 

    And the fundamental frequency ω0 = 2

    sin2t can be expressed as:

    \({\sin ^2}t = {\left( {\frac{{{e^{jt}} - {e^{ - jt}}}}{{2j}}} \right)^2}\) 

    \({\sin ^2}t = \frac{{ - 1}}{4}\left( {{e^{2jt}} - 2 + {e^{ - 2jt}}} \right)\;\)      ---(2)

    Comparing equation (2) with the standard expression of Equation (1), we can write:

    \({c_n} = \frac{{ - 1}}{4}\delta \left( {n - 1} \right) + \frac{1}{2}\delta \left( n \right) - \frac{1}{4}\delta \left( {n + 1} \right)\;\;\) 

  • Question 2
    1 / -0
    The Fourier series coefficient of signal x(t) is c, then the Fourier series coefficient of the signal x(0.5t) + x(t – 0.5) + x(2t) will be:
    Solution

    Time scaling will not effect the Fourier series coefficient

    x (0.5t) → Ck

    \(x\left( {t - 0.5} \right) \to {e^{ - j{\omega _0}0.5k}}{C_k}\)

    x (2t) → Ck

    ∴ Fourier series coefficient of the given signal is

    \({C_k}\left( {1 + {e^{ - j{\omega _0}0.5k}}} \right) + {C_k}\)
  • Question 3
    1 / -0

    Consider a periodic signal x[n] with period N and Fourier series coefficients ck. The Fourier Series coefficients dk of the signal y[n] = (-1)n x[n] will be:

    (assume that N is even)
    Solution

    (-1)n can be written as (e)n

    y(n) can now be written as:

    \({\left( { - 1} \right)^n}x\left[ n \right] = {\left( {{e^{j\pi }}} \right)^n}x\left[ n \right]\)

    This can also be written as:

    \(y\left[ n \right] = {e^{j\left( {\frac{{2\pi }}{N}} \right)\left( {\frac{N}{2}} \right)n}}x\left[ n \right]\)

    The Fourier series coefficient of y[n] will be:

    \({d_k} = \frac{1}{N}\;\mathop \sum \limits_{n = 0}^{N - 1} x\left[ n \right]{e^{j\left( {\frac{{2\pi }}{N}} \right)\frac{N}{2}n\;}}{e^{ - j\left( {\frac{{2\pi }}{N}} \right)nk}}\)

    \(= \frac{1}{N}\;\mathop \sum \limits_{n = 0}^{N - 1} x\left[ n \right]{e^{ - j\left( {\frac{{2\pi }}{N}} \right)n\left( {k - \frac{N}{2}} \right)}}\)

    \({d_k} = {c_{k - \frac{N}{2}}}\)

  • Question 4
    1 / -0

    What is the amplitude of the second harmonic component of the signal x(t) given below?

    \(x\left( t \right) = \cos \left( {\frac{{2\pi }}{3}t} \right) + 2\cos \left( {\frac{{5\pi }}{3}t} \right)\)

    Solution

    x(t) can be written as:

    x(t) = x1(t) + x2(t)

    \({x_1}\left( t \right) = \cos \left( {\frac{{2\pi }}{3}t} \right)\) 

    \({x_2}\left( t \right) = 2\cos \left( {\frac{{5\pi }}{3}t} \right)\) 

    The time period of x1(t) is:

    \({T_1} = \frac{{2\pi }}{{2\pi /3}} = 3\) 

    Time period of x2(t) is:

    \({T_2} = \frac{{2\pi \;}}{{5\pi /3}} = \frac{6}{5}\) 

    Time period of x(t) will be:

    \({T_0} = LCM\;\left( {{T_1},\;{T_2}} \right) = 6\) 

    ∴ The fundamental frequency will be:

    \({\omega _0} = \frac{{2\pi }}{{{T_0}}} = \frac{{2\pi }}{6} = \frac{\pi }{3}\) 

    Now, in exponential terms, x(t) can be written as:

    \(x\left( t \right) = \frac{1}{2}{e^{j \cdot \frac{{2\pi }}{3} \cdot t\;}} + \frac{1}{2}{e^{ - j\frac{{2\pi }}{3}t}} + {e^{j\frac{{5\pi }}{3}t}} + {e^{ - j\frac{{5\pi }}{3}t}}\) 

    In terms of the fundamental frequency ω0, we can write:

    \(x\left( t \right) = \frac{1}{2}{e^{j2{\omega _0}t}} + \frac{1}{2}{e^{ - j2{\omega _0}t}} + {e^{j5{\omega _0}t}} + {e^{ - j5{\omega _0}t}}\) 

    Also, the general expression for the exponential Fourier series is written as:

    \(x\left( t \right) = \mathop \sum \limits_{n = - \infty }^\infty {c_n}{e^{jn{\omega _0}t}}\) 

    Comparing x(t) with the above general expression we get:

    c-5 = 1

    \({c_{ - 2}} = \frac{1}{2}\) 

    \({c_2} = \frac{1}{2}\)

    c5 = 1

    ∴ The amplitude of the second harmonic component will be:

    \({c_2} = \frac{1}{2}\) 

  • Question 5
    1 / -0
    Consider a real periodic signal x[n] with period N and FS coefficient ck. If N is even then which of the following statements is true?
    Solution

    Fourier series coefficient is given as:

    \({c_k} = \frac{1}{N}\mathop \sum \limits_{\left\langle N \right\rangle } x\left( n \right){e^{ - j\left( {\frac{{2\pi }}{N}} \right)kn}}\)

    for k = 0:

    \({c_0} = \frac{1}{N}\mathop \sum \limits_{\left\langle N \right\rangle } x\left[ n \right]\)

    So, If x(n) is real, c0 will also be real.

    For \(k = \frac{N}{2}\), we can write:

    \({c_k} = \frac{1}{N}\mathop \sum \limits_{\left\langle N \right\rangle } x\left( n \right){e^{ - j\left( {\frac{{2\pi }}{N}} \right)\left( {\frac{N}{2}} \right)\;n}}\)

    \(\because {e^{ - j\pi n}} = {\left( { - 1} \right)^n}\)

    \({c_{N/2}} = \frac{1}{N}\mathop \sum \limits_{\left\langle N \right\rangle } x\left[ n \right]{\left( { - 1} \right)^n}\)

    So, If x[n] is real, cN/2 will also be real.

    ∴ We conclude that at least two of the FS coefficient are real within one period, If N is even.

  • Question 6
    1 / -0

    Consider a periodic signal x(t) whose Fourier series coefficient is defined as below

    \({c_n} = \left\{ {\begin{array}{*{20}{c}} {2\;\;\;\;\;\;\;\;,\;\;\;\;\;\;\;\;n = 0}\\ {j{{\left( {\frac{1}{2}} \right)}^{\left| n \right|}},\;\;\;otherwise} \end{array}} \right.\)

    Which of the following is true?

    Solution

    Concept:

    Properties of Fourier series coefficient:

    1) If x(t) is real, then the Fourier series coefficient satisfies the condition:

    \({c_n} = c_{ - n}^*\) (* denotes conjugate)

    2) If x(t) is even, then:

    cn = c-n

    3) Fourier series coefficient of \(\frac{{dx\left( t \right)}}{{dt}}\) is given by:

    \(\frac{{dx\left( t \right)}}{{dt}}\mathop \leftrightarrow \limits^{C.T.F.S} jn\frac{{2\pi }}{{{T_0}}} \cdot {c_n}\)

    Application:

    Given:

    \({c_n} = \left\{ {\begin{array}{*{20}{c}} {2,\;\;\;\;\;\;\;,\;\;\;\;\;\;\;\;\;~n = 0}\\ {j{{\left( {\frac{1}{2}} \right)}^{\left| n \right|}},\;\;\;\;otherwise} \end{array}} \right.\)

    c-n will be defined as:

    \(c_{ - n}^* = \left\{ {\begin{array}{*{20}{c}} {2\;\;\;\;\;\;\;\;\;,\;\;\;\;\;\;n = 0}\\ { - j{{\left( {\frac{1}{2}} \right)}^{\left| n \right|}},\;\;\;\;otherwise} \end{array}} \right.\)

    Since \({c_n} \ne c_{ - n}^*\), x(t) is not real.

    Also, we observe that cn = c-n.

    The function x(t) is even.

    \(x\left( t \right) \leftrightarrow {c_n}\)

    \(\frac{{dx\left( t \right)}}{{dt}}\mathop \leftrightarrow \limits^{C.T.F.S} c_n' = jn\frac{{2\pi }}{{{T_0}}} \cdot {c_n}\)

    \(c_n' = \left\{ {\begin{array}{*{20}{c}} {0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;,\;\;\;\;\;\;n = 0}\\ { - n{{\left( {\frac{1}{2}} \right)}^{\left| n \right|}}.\frac{{2\pi }}{{{T_0}}}\;\;,\;\;\;\;otherwise} \end{array}} \right.\)

    We observe that \(c_n' \ne c_{ - n}'\)

    \(\therefore y\left( t \right) = \frac{{dx\left( t \right)}}{{dt}}\) is not even.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now