Self Studies

Signals and Systems Test 3

Result Self Studies

Signals and Systems Test 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The Fourier transform of x(t) = A cos (2π f0 t) is X(jω) = 10[δ(ω – 4π) + δ (ω + 4π)].  The value f0 is _______  (in Hz).
    Solution

    Concept:

    The Fourier transform of a constant signal is an impulse function, i.e.

    \(1\;\mathop \leftrightarrow \limits^{F.T} 2\pi \;\delta \left( \omega \right)\)

    \({e^{j{\omega _0}t}} \cdot 1\;\mathop \leftrightarrow \limits^{FT} 2\pi \;\delta \left( {\omega - {\omega _0}} \right)\)

    \({e^{ - j{\omega _0}t}} \cdot 1\;\mathop \leftrightarrow \limits^{FT} 2\pi \;\delta \;\left( {\omega + {\omega _0}} \right)\)

    Application:

    Acos ω0 t can be written as:

    \(A\cos {\omega _0}t = \frac{A}{2}{e^{j{\omega _0}t}} + \frac{A}{2}{e^{ - j{\omega _0}t}}\)

    ∴ The Fourier Transform of cos ω0 t will be:

    \(A\cos {\omega _0}t \leftrightarrow \frac{A}{2} \cdot 2\pi \delta \left( {\omega - {\omega _0}} \right) + \frac{A}{2} \cdot 2\pi \delta \left( {\omega + {\omega _0}} \right)\)

    \(\cos {\omega _0}t \leftrightarrow A\pi \left[ {\delta \left( {\omega - {\omega _0}} \right) +\;\delta \left( {\omega + {\omega _0}} \right)} \right]\)       ---(1)

    Given:

    X(jω0) = 10 [δ(ω – 4π) + δ(ω + 4π)]        ---(2)

    Comparing equation (1) and (2), we get:

    ω0 = 4π

    2πf0 = 4π

    f0 = 2 Hz  

  • Question 2
    1 / -0

    The signal x(t) is described by

    \(x\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {1\;for}&{ - 1 \le t \le 1}\\ 0&{otherwise} \end{array}} \right.\)

    Two of the angular frequencies at which its Fourier transform becomes zero are
    Solution

    \(x\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {1\;for}&{ - 1 \le t \le 1}\\ 0&{otherwise} \end{array}} \right.\)

    Fourier transform:

    \(X\left( {j\omega } \right) = \mathop \smallint \limits_{ - \infty }^\infty {e^{ - j\omega t}}x\left( t \right)dt\)

    \(=\mathop \smallint \limits_{ - 1 }^1 {e^{ - j\omega t}}(1)dt\)

    \(= \frac{1}{{ - j{\rm{\omega }}}}\left[ {{e^{ - j{\rm{\omega }}}}} \right]_{ - 1}^1\)

    \(X(j\omega )= \frac{1}{{ - j{\rm{\omega }}}}\left( {{e^{ - j{\rm{\omega }}}} - {e^{j{\rm{\omega }}}}} \right)\)

    X(jω) is zero at ω = π and ω = 2π.

  • Question 3
    1 / -0
    The DTFT of a signal f(n) = {a, b, c, d} is F(ω). The inverse DTFT of F(ω - π) is:
    Solution

    Concept:

    If the DTFT of a signal f(n) ↔ F(ω), then from the frequency shifting property

     \({{e}^{j{{\omega }_{o}}n}}f\left( n \right)\leftrightarrow F\left( \omega -{{\omega }_{o}} \right)\)

    Calculation:

    Given, f(n) = {a, b, c, d}

    If f(n) ↔ F(ω)

    Then, \({{e}^{j\pi n}}f\left( n \right)\leftrightarrow F\left( \omega -\pi \right)\)

    So, the inverse DTFT of F(ω - π) is

    ejπn f(n), i.e

    \(\Rightarrow {{\left( -1 \right)}^{n}}f\left( n \right)=\left\{ f\left( 0 \right),~\left( -1 \right)f\left( 1 \right),~f\left( 2 \right),~\left( -1 \right)f\left( 3 \right) \right\}\)

    = {a, -b, c, -d}
  • Question 4
    1 / -0

    The impulse response of the causal LTI system that is characterised by the difference equation \(y\left[ n \right] - \frac{3}{4}y\left[ {n - 1} \right] + \frac{1}{8}y\left[ {n - 2} \right] = 2x\left[ n \right]\) is

    Solution

    The frequency response

    \(\begin{array}{l} H\left( {{e^{j\omega }}} \right) = \frac{{y\left( {{e^{j\omega }}} \right)}}{{x\left( {{e^{j\omega }}} \right)}}\\ = \frac{2}{{1 - \frac{3}{4}{e^{ - j\omega }} + \frac{1}{8}{e^{ - j2\omega }}}}\\ = \frac{2}{{\left( {1 - \frac{1}{2}{e^{ - j\omega }}} \right)\left( {1 - \frac{1}{4}{e^{ - j\omega }}} \right)}}\\ = \frac{4}{{1 - \frac{1}{2}{e^{ - j\omega }}}} - \frac{2}{{1 - \frac{1}{4}{e^{ - j\omega }}}} \end{array}\)

    Taking inverse Fourier transform

    \(h\left[ n \right] = 4{\left( {\frac{1}{2}} \right)^n}u\left[ n \right] - 2{\left( {\frac{1}{4}} \right)^n}u\left[ n \right]\)
  • Question 5
    1 / -0
    Consider the given convolution y1(t) = x1(t) * x2(t) and y2(t) = x1(3t) * x2(3t), then \(\frac{{{y_2}\left( t \right)}}{{{y_1}\left( {3t} \right)}} = \) _________.(up to two decimal places)
    Solution

    Let,

    \({x_1}\left( t \right)\mathop \leftrightarrow \limits^{F.T} {x_1}\left( {j\omega } \right)\)

    \({x_1}\left( {3t} \right)\mathop \leftrightarrow \limits^{F.T} \frac{1}{3}{x_1}\left( {\frac{{j\omega }}{3}} \right)\)

    Similarly

    \({x_2}\left( t \right)\mathop \leftrightarrow \limits^{F.T} \;{x_2}\left( {j\omega } \right)\)

    \({x_2}\left( {3t} \right)\mathop \leftrightarrow \limits^{F.T} \;\frac{1}{3}{x_2}\left( {\frac{{j\omega }}{3}} \right)\)

    y2(t) = x1(3t) * x2(3t)

    Since the convolution in the time domain is the multiplication in the frequency domain, we can write:

    \({y_2}\left( t \right)\mathop \leftrightarrow \limits^{F.T} \;{y_2}\left( {j\omega } \right) = \frac{1}{9}{x_1}\left( {\frac{{j\omega }}{3}} \right){x_2}\left( {\frac{{j\omega }}{3}} \right)\)         ---(1)

    Given: y1(t) = x1(t) * x2(t)

    \({y_1}\left( {j\omega } \right) = {x_1}\left( {j\omega } \right){x_2}\left( {j\omega } \right)\)

    Substituting ω → ω/3 in the above, we can write:

    \({y_1}\left( {\frac{{j\omega }}{3}} \right) = {x_1}\left( {\frac{{j\omega }}{3}} \right){x_2}\left( {\frac{{j\omega }}{3}} \right)\)       ---(2)

    Using equation (2), Equation (1) can now be written as:

    \({y_2}\left( {j\omega } \right) = \frac{1}{9}\;{y_1}\left( {\frac{{j\omega }}{3}} \right)\)

    Taking the inverse Fourier transform, we get:

    \({y_2}\left( t \right) = \frac{1}{3}\;{y_1}\left( {3t} \right)\)

    \(\therefore \;\frac{{{y_2}\left( t \right)}}{{{y_1}\left( {3t} \right)}} = \frac{1}{3} = 0.333\)

  • Question 6
    1 / -0

    The impulse response h(t) of linear time invariant continuous time system is given by h(t) = exp (-2t) u(t), where u(t) denotes the unit step function.

    The output of this system, to the sinusoidal input x (t) = 2 cos 2t for all time t, is
    Solution

    h(t) = e-2t u(t)

    \(H\left( j\omega \right)=\underset{-\infty }{\overset{\infty }{\mathop \int }}\,h\left( t \right){{e}^{-j\omega t}}dt\)

    \(=\underset{-\infty }{\overset{\infty }{\mathop \int }}\,{{e}^{-2t}}{{e}^{-j\omega t}}dt\)

    \(=\underset{0}{\overset{\infty }{\mathop \int }}\,{{e}^{-\left( 2+j\omega \right)t}}dt\)

    \(=\frac{1}{2+j\omega }\)

    \(\left| H\left( j\omega \right) \right|=\sqrt{\frac{1}{4+{{\omega }^{2}}}}\)

    \(\angle H\left( j\omega \right)=-{{\tan }^{-1}}\left( \frac{\omega }{2} \right)\)

    x(t) = 2 cos 2t

    The phase response at ω = 2 rad/sec is:

    \(\angle H(j\omega)=-\frac{\pi }{4}=-0.25~\pi \)

    The magnitude response at ω = 2 rad/sec is:

    \(|H(j\omega)|_{\omega =2}=\frac{1}{2\sqrt{2}}\)

    Output \(=\frac{1}{2\sqrt{2}}\text{ }\!\!~\!\!\text{ }2\cos \left( 2t-0.25~\pi \right)\)

    \(=\frac{1}{\sqrt{2}}\cos \left( 2t-0.25~\pi \right)\)

    = 2-0.5 cos (2t – 0.25 π)

  • Question 7
    1 / -0
    The value of the following summation \(\underset{n=0}{\overset{\infty }{\mathop \sum }}\,n{{\left( \frac{1}{3} \right)}^{n}}\) is _______.(up to two decimal places)
    Solution

    Concept:

    \(f\left( n \right)\overset{DTFT}{\mathop{\leftrightarrow }}\,F\left( \omega \right)\)

    \(n~f\left( n \right)\leftrightarrow \frac{jdF\left( \omega \right)}{d\omega }\)

    Also, the discrete-time Fourier Transform of a sequence f(n) is given by:

    \(F\left( \omega \right) = \mathop \sum \limits_{ - \infty }^\infty f\left( n \right){e^{ - j\omega n}}\)

    Now, the DTFT of ‘nf(n)’ will be:

    \(j\frac{d~F\left( \omega \right)}{d\omega }= \mathop \sum \limits_{ - \infty }^\infty nf\left( n \right){e^{ - j\omega n}}\)

    At, ω = 0

    \(j\frac{dF\left( 0 \right)}{d\omega }=\mathop \sum \limits_{ - \infty }^\infty nf\left( n \right)\)     ---(1)

    Calculation:

    \(f\left( x \right)={{\left( \frac{1}{3} \right)}^{n}}u\left( n \right)\)

    \(F\left( \omega \right)=\frac{1}{1-\left( \frac{1}{3} \right){{e}^{-j\omega }}}\)

    \(n{{\left( \frac{1}{3} \right)}^{n}}u\left( n \right)\leftrightarrow j\frac{dF\left( \omega \right)}{d\omega }\)

    \(j\frac{dF\left( \omega \right)}{d\omega }=j\left[ \frac{\left( \frac{1}{3} \right)\left( {{e}^{-j\omega }} \right)\left( -j \right)}{{{\left( 1-\left( \frac{1}{3} \right){{e}^{-j\omega }} \right)}^{2}}} \right]\)

    \(=\frac{\frac{1}{3}{{e}^{-j\omega }}}{{{\left( 1-\frac{1}{3}{{e}^{-j\omega }} \right)}^{2}}}\)

    From Equation (1),

    \(\mathop \sum \limits_{ - \infty }^\infty\,nf\left( n \right)u\left( n \right)=\mathop \sum \limits_{ 0 }^\infty\,nf\left( n \right)\)

    \(=\mathop \sum \limits_{ 0 }^\infty\,n{{\left( \frac{1}{3} \right)}^{n}}u\left( n \right)=j\frac{dF\left( 0 \right)}{d\omega }\)

    \(f\left( n \right)={{\left( \frac{1}{3} \right)}^{n}}u\left( n \right)\)

    \(j\frac{dF\left( 0 \right)}{d\omega }=\frac{\frac{1}{3}}{{{\left( 1-\frac{1}{3} \right)}^{2}}}\)

    \(=\frac{1}{3\times {{\left( \frac{2}{3} \right)}^{2}}}=\frac{1}{3}\times \frac{9}{4}\)

    \(=\frac{3}{4}=0.75\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now