Concept:
\(f\left( n \right)\overset{DTFT}{\mathop{\leftrightarrow }}\,F\left( \omega \right)\)
\(n~f\left( n \right)\leftrightarrow \frac{jdF\left( \omega \right)}{d\omega }\)
Also, the discrete-time Fourier Transform of a sequence f(n) is given by:
\(F\left( \omega \right) = \mathop \sum \limits_{ - \infty }^\infty f\left( n \right){e^{ - j\omega n}}\)
Now, the DTFT of ‘nf(n)’ will be:
\(j\frac{d~F\left( \omega \right)}{d\omega }= \mathop \sum \limits_{ - \infty }^\infty nf\left( n \right){e^{ - j\omega n}}\)
At, ω = 0
\(j\frac{dF\left( 0 \right)}{d\omega }=\mathop \sum \limits_{ - \infty }^\infty nf\left( n \right)\) ---(1)
Calculation:
\(f\left( x \right)={{\left( \frac{1}{3} \right)}^{n}}u\left( n \right)\)
\(F\left( \omega \right)=\frac{1}{1-\left( \frac{1}{3} \right){{e}^{-j\omega }}}\)
\(n{{\left( \frac{1}{3} \right)}^{n}}u\left( n \right)\leftrightarrow j\frac{dF\left( \omega \right)}{d\omega }\)
\(j\frac{dF\left( \omega \right)}{d\omega }=j\left[ \frac{\left( \frac{1}{3} \right)\left( {{e}^{-j\omega }} \right)\left( -j \right)}{{{\left( 1-\left( \frac{1}{3} \right){{e}^{-j\omega }} \right)}^{2}}} \right]\)
\(=\frac{\frac{1}{3}{{e}^{-j\omega }}}{{{\left( 1-\frac{1}{3}{{e}^{-j\omega }} \right)}^{2}}}\)
From Equation (1),
\(\mathop \sum \limits_{ - \infty }^\infty\,nf\left( n \right)u\left( n \right)=\mathop \sum \limits_{ 0 }^\infty\,nf\left( n \right)\)
\(=\mathop \sum \limits_{ 0 }^\infty\,n{{\left( \frac{1}{3} \right)}^{n}}u\left( n \right)=j\frac{dF\left( 0 \right)}{d\omega }\)
\(f\left( n \right)={{\left( \frac{1}{3} \right)}^{n}}u\left( n \right)\)
\(j\frac{dF\left( 0 \right)}{d\omega }=\frac{\frac{1}{3}}{{{\left( 1-\frac{1}{3} \right)}^{2}}}\)
\(=\frac{1}{3\times {{\left( \frac{2}{3} \right)}^{2}}}=\frac{1}{3}\times \frac{9}{4}\)
\(=\frac{3}{4}=0.75\)