Self Studies

Signals and Systems Test 4

Result Self Studies

Signals and Systems Test 4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let x(t) be a signal with Nyquist rate ω0. The Nyquist rate of the signal x(t) + x (t – ω0) is
    Solution

    Concept:

    The Nyquist Rate is obtained by sampling the signal at twice the maximum frequency.

    Let x(t) have a Fourier Transform X(ω)

    ie. \(x\left( t \right)\overset{F.T}{\mathop{\leftrightarrow }}\,X\left( ω \right)\)

    \(Y\left( ω \right)=X\left( ω \right)+{{e}^{-jω {{ω }_{0}}}}X\left( ω \right)\)

    \(=X\left( ω \right)\left[ 1+{{e}^{-jω {{ω }_{0}}}} \right]\)

    |Y(ω)| = |X(ω)|

    The magnitude spectrum of both the signals are same.

    ∴ the maximum frequency of the signal is still limited by X(ω).

    Hence sampling Frequency = ωo

  • Question 2
    1 / -0
    If signal x(t) = 2 + cos (50 πt) is sampled with sampling frequency 40 Hz, then the sampled discrete time signal x[n] will be given by:
    Solution

    Concept:

    For a signal x(t) sampled with a sampling interval Ts, the discrete sequence can be written as:

    \(x\left( n \right) = x{\left. {\left( t \right)} \right|_{t = n{T_s}}}\) 

    Ts = sampling interval

    Application:

    Given:

    x(t) = 2 + cos (50 πt)

    fs = 40 Hz

    \(\therefore {T_s} = \frac{1}{{40}} = 0.025\;sec\)

    \(x\left( n \right) = x{\left. {\left( t \right)} \right|_{t = n{T_s}}}\)

    x(n) = 2 + cos (50π nTs)

    Substituting the respective values, we get:

    x(n) = 2 + cos (50 π n × 0.025)

    x(n) = 2 + cos (1.25 πn)

    = 2 + cos (1.25 πn – 2πn)

    x(n) = 2 + cos (-0.75 πn)

    \(=2 + \cos \left( {\frac{{3\pi }}{4}n} \right)\)

  • Question 3
    1 / -0

    The difference in the number of complex multipliers required for 16-point DFT and 16-point radix-2 FFT is:

    Solution

    Concept:

    For an N-point DFT as shown, the number of multiplication:

    (M)DFT = N(rows) × [N multiplication per Row]

    M(DFT) = N2

    \(\left[ {\begin{array}{*{20}{c}} 1&2&3& \ldots &N\\ 1& \ldots & \ldots & \ldots & \ldots \\ 1& \ldots & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ N& \ldots & \ldots & \ldots &N \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1\\ \ldots \\ \ldots \\ \ldots \\ N \end{array}} \right]\)

    And for an N-point FFT, the number of multiplication equals the number of stages × Multiplications per stage, i.e.

    \({\left( M \right)_{FFT}} = {\log _2}N \times \frac{N}{2}\)

    Calculation:

    (M)DFT = N2 = 256

    \({\left( M \right)_{FFT}} = \frac{{16}}{2}{\log _2}\left( {16} \right)\)

    \( = \frac{{16}}{2} \times 4 = 32\)

    (M)DFT – (M)FFT = 256 – 32 = 224

  • Question 4
    1 / -0

    Let x(n) be a 8-point real sequence with 8-point DFT X(K) and x(n) satisfies the symmetry

    \(x\left[ {n + \frac{N}{2}} \right] = -x\left( n \right)\) n = 0,1,2,3,

    Then the value of \(\mathop \sum \limits_{k = 0}^3 X\left[ {2k} \right]\) is ______
    Solution

    \(\begin{array}{l} x\left( k \right) = \mathop \sum \limits_{n = 0}^7 x\left( n \right){e^{\frac{{ - j2\pi nk}}{8}}}\\ = \mathop \sum \limits_{n = 0}^3 x\left( n \right){e^{ - j\frac{{2\pi }}{8}nk\;}} + \mathop \sum \limits_{n = 4}^7 x\left( n \right){e^{ - j\frac{{2\pi }}{8}nk}} \end{array}\)

    let n – 4 = l → n = 4 + l

    Second summation becomes

    \(\mathop \sum \limits_{l = 0}^3 x\left( {4 + l} \right){e^{ - j\frac{{2\pi }}{8}\left( {4 + l} \right)k}}\)

    \(\mathop \sum \limits_{l = 0}^3 x\left( {4 + l} \right){e^{ - j\frac{{2\pi }}{8}lk}}{e^{ - j\pi k}}\)

    Changing the variable

    l → n, 2nd summation becomes

    \(\mathop \sum \limits_{n = 0}^3 x\left( {n + 4} \right){e^{ - j\frac{{2\pi }}{8}nk}}{e^{ - j\pi k}}\)      ______(1)

    Symmetry property in Question

    \(x\left( {n + \frac{N}{2}} \right) = - x\left( n \right)\)

    x(n + 4) = -x(n)          _____(2)

    Substitute in (1)

    \(- \mathop \sum \limits_{n = 0}^3 x\left( n \right){e^{ - j\frac{{2\pi }}{8}nk}}{e^{ - j\pi k}}\)

    e-jπk = (-1)k

    The total summation is

    \(X\left[ k \right] = \mathop \sum \limits_{n = 0}^3 x\left( n \right){e^{ - j\frac{{2\pi }}{8}nk}} - \mathop \sum \limits_{n = 0}^3 x\left( n \right){e^{ - j\frac{{2\pi }}{8}nk}}{\left( { - 1} \right)^k}\)

    For k = even (0, 2, 4, 6)

    X[0] = X[2] = X[4] = X[6] = 0

    \(\mathop \sum \limits_{k = 0}^3 X\left[ {2k} \right] = 0\)
  • Question 5
    1 / -0

    Let x(n), defined for n = 0, 1 . . . . 7 have a DFT as shown:

    X(k) = [1, 1-j, 1, 0, 1, 0, 1, 1+j]

    The DFT of a function y(n) = x(n) ⊗ δ(n – 2) will be:
    Solution

    Concept:

    If DFT of x(n) is X(k) i.e.

    If \(x(n) \overset{DFT}{\longleftrightarrow} X(k)\)

    Then \(x(n-n_0)\overset{DFT}{\longleftrightarrow} X(k)e^{-jk\omega n_0}\)

    Calculation:

    Given X(k) = [1, 1 – j, 1, 0, 1, 0, 1, 1+j] (N = 8 point DFT)

    y(n) = x(n) ⊗ δ (n – 2) = x(n – 2) (Convolution with impulse property)

    ⇒ Y(k) = X(k)e-jω2k 

    \(=X\left( k \right).{{e}^{-j\frac{2\pi .2k}{8}}}\)

    \(=X\left( k \right){{e}^{-\frac{jk\pi }{2}}}\)

    So, Y(k) = [1.(-j)0, (1 – j).(-j)1, 1.(-j)2, 0.(-j)3, 1.(-j)4, 0.(-j)5, 1.(-j)6, (1 + j).(-j)7]

    = [ 1, -1 – j, -1, 0, 1, 0, -1, -1 + j]

  • Question 6
    1 / -0

    The first six points of the 8 point DFT of a real-valued sequence are 5, 1 – 3j, 0, 3 – 4j, 0 and 3 + 4j. The last two points of the DFT will be respectively:

    Solution

    Concept:

    N-point DFT of a sequence x(n) defined for n = 0, 1, 2 ... N-1 is given by:

    \(X\left( k \right)=\sum_{n=0}^{N-1}x\left( n \right){{e}^{-jk\omega n}}\)

    Also If \(x(n)\overset{DFT}{\longleftrightarrow} X(k)\)

    The Conjugate symmetric property of DFT states:

    X(k) = X*(N – k) 'or' X(N – k) = X*(k) 

    Calculation:

    Given, X(k) = {5, 1 - 3j, 0, 3 – 4j, 0, 3 + 4j, A, B]

    Where A and B are the missing variable values.

    Using the conjugate symmetric property of DFT: X(k) = X*(N – k)

    We find X(6) = A = X*(8 – 6) = X*(2)

    With X(2) = 0, X*(2) = 0

    So, X(6) = A = 0

    Similarly,

    B = X(7) = X*(8 – 7) = X*(1)

    With, X(1) = 1 – 3j

    X(7) = X*(1) = 1+3j

    So, A = 0 and B = 1 + 3j

    Option (2) is therefore correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now