Conventional Method:
The Laplace transform of a function x(t) is defined as:
\(X\left( s \right) = \mathop \smallint \limits_{ - \infty }^\infty x\left( t \right){e^{ - st}}dt\)
Given:
x(t) = (P + Qe-bt) u(t)
x(t) = Pu(t) + Qe-bt u(t)
Taking the Laplace Transform of the above, we get:
\(X\left( s \right) = \mathop \smallint \limits_0^\infty P{e^{ - st}}dt + \mathop \smallint \limits_0^\infty Q{e^{ - bt}} \cdot {e^{ - st}}dt\)
\(X\left( s \right) = \underbrace {P\mathop \smallint \limits_0^\infty {e^{ - st}}dt}_I + \underbrace {Q\mathop \smallint \limits_0^\infty {e^{ - \left( {b + s} \right)t}}dt}_{II}\)
Integral I converges for s > 0, and integral II converges for b + s > 0, or for Re(s) > -b.
∴ ROC is the intersection of Re(s) > 0 and Re(s) > - b, i.e. the resultant ROC will be:
ROC: Re(s) > max (-b, 0)
Conceptual Approach:
Since u(t) is a right sided signal, its ROC will also be right sided, i.e.
\(u\left( t \right)\mathop \leftrightarrow \limits^{LT} \frac{1}{s};Re\left( s \right) > 0\)
Similarly,
\({e^{ - bt}}u\left( t \right)\mathop \leftrightarrow \limits^{L.T.} \frac{1}{{s + b}};Re\left( s \right) > - b\)
The ROC of the sum of the two will be the intersection of the two, i.e.
ROC; Re(s) > max (-b, 0)