Self Studies

Signals and Systems Test 5

Result Self Studies

Signals and Systems Test 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    A CT signal is given as x(t) = [P + Qe-bt] u(t) where P and Q we constant. The ROC of Laplace transform of x(t) is

    Solution

    Conventional Method:

    The Laplace transform of a function x(t) is defined as:

    \(X\left( s \right) = \mathop \smallint \limits_{ - \infty }^\infty x\left( t \right){e^{ - st}}dt\)

    Given:

    x(t) = (P + Qe-bt) u(t)

    x(t) = Pu(t) + Qe-bt u(t)

    Taking the Laplace Transform of the above, we get:

    \(X\left( s \right) = \mathop \smallint \limits_0^\infty P{e^{ - st}}dt + \mathop \smallint \limits_0^\infty Q{e^{ - bt}} \cdot {e^{ - st}}dt\)

    \(X\left( s \right) = \underbrace {P\mathop \smallint \limits_0^\infty {e^{ - st}}dt}_I + \underbrace {Q\mathop \smallint \limits_0^\infty {e^{ - \left( {b + s} \right)t}}dt}_{II}\)

    Integral I converges for s > 0, and integral II converges for b + s > 0, or for Re(s) > -b.

    ∴ ROC is the intersection of Re(s) > 0 and Re(s) > - b, i.e. the resultant ROC will be:

    ROC: Re(s) > max (-b, 0)

    Conceptual Approach:

    Since u(t) is a right sided signal, its ROC will also be right sided, i.e.

    \(u\left( t \right)\mathop \leftrightarrow \limits^{LT} \frac{1}{s};Re\left( s \right) > 0\)

    Similarly,

    \({e^{ - bt}}u\left( t \right)\mathop \leftrightarrow \limits^{L.T.} \frac{1}{{s + b}};Re\left( s \right) > - b\)

    The ROC of the sum of the two will be the intersection of the two, i.e.

    ROC; Re(s) > max (-b, 0)

  • Question 2
    1 / -0

    A signal x(t) has the Laplace transform \(X\left( s \right) = \frac{s}{{\left( {{s^2} + 9} \right)}},\;Re\left( s \right) < 0\). The signal x(t) at t = -π/3 ______ 

    Solution

    Concept:

    \(\cos at\;u\left( t \right) \leftrightarrow \frac{s}{{{s^2} + {a^2}}}\) 

    Since cos at u(t) is a right-sided signal, the ROC will be:

    Re{s} > 0

    Also,

    \(- \cos at\;u\left( { - t} \right) \leftrightarrow \frac{s}{{{s^2} + {a^2}}}\) 

    Re{s} < 0

    Application:

    Given \(X\left( s \right) = \frac{s}{{{s^2} + 9}}\;;Re\left( s \right) < 0\)

    The inverse Laplace transform of the above will be:

    \(X\left( s \right)\mathop \leftrightarrow \limits^{I.L.T} - \cos \left( {3t} \right)\;u\left( { - t} \right)\) 

    ∴ x(t) = - cos (3t) u(-t)

    At \(t = - \frac{{\pi \;}}{3}\), we get

    x(t) = -cos (-π) = 1 

  • Question 3
    1 / -0
    The Laplace transform of a causal signal y(t) is Y(s) = \(\frac{{s + 4}}{{s + 8}}\). The value of the signal y(t) at t = 0.15 sec is ____
    Solution

    \(Y\left( s \right) = \frac{{s + 4}}{{s + 8}}\)

    \(= 1 - \frac{4}{{s + 8}}\)

    By applying inverse Laplace transform

    y(t) = δ(t) – 4 e-8t u(t)

    At t = 0.15 sec,

    Y (0.15) = δ (0.15) – 4e-1.2 u (0.15)

    = 0 – 4e-1.2 = -1.2
  • Question 4
    1 / -0
    For a system, transfer function \(H\left( s \right) = \frac{{b\left( {s + a} \right)}}{{s + b}}\) & unit step response is y(t). If y(0) = 4 & steady state value of y(t) is 20 then b/a is
    Solution

    \(u(t)\leftrightarrow \frac{1}{s}; Re(s)>0\)

    Given step response is y(t), i.e.

    \(Y\left( s \right) = H\left( s \right)U\left( s \right) \)

    \(Y(s)= \frac{{b\left( {s + a} \right)}}{{s\left( {s + b} \right)}}\)

    From the initial value theorem, we can write:

    \( y\left( 0 \right) = \mathop {{\rm{lt}}}\limits_{s \to \infty } sY\left( s \right)\)

    \(\\ = \mathop {{\rm{lt}}}\limits_{s \to \infty } \frac{{sb\left( {s + a} \right)}}{{s\left( {s + b} \right)}} = 4 \)

    b = 4

    From final value theorem:

    \(y\left( \infty \right) = \mathop {{\rm{lt}}}\limits_{s \to 0} sY\left( s \right)\)

    \(\\ = \mathop {{\rm{lt}}}\limits_{s \to 0} \frac{{sb\left( {s + a} \right)}}{{s\left( {s + b} \right)}} = 20 \)

    a = 20

    \(\therefore \frac{b}{a} = \frac{4}{{20}} = 0.2\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now