Self Studies

Control Systems Test 2

Result Self Studies

Control Systems Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The output of a standard second order system for a unit – step input is given as

    \(y\left( t \right) = 1 - \frac{2}{{\sqrt 3 }}{e^{ - t}}\cos \left( {\sqrt 3 t - \frac{\pi }{3}} \right)\)

    The natural frequency of oscillation is _______.
    Solution

    Comparing the given equation with standard 2nd order response

    \(c\left( t \right) = 1 - \frac{{{e^{ - {\rm{\zeta \;}}{{\rm{\omega }}_{nt}}}}}}{{\sqrt {1 - {\rm{\zeta }}{{\rm{\;}}^2}} }}\sin \left( {{\omega _{d}t} + {{\cos }^{ - 1}}{\rm{\zeta \;}}} \right)\)

    \(y\left( t \right) = 1 - \frac{2}{{\sqrt 3 }}{e^{ - {\rm{ \;}}{{\rm{}}_{t}}}}\cos \left( {\sqrt 3 t - \frac{\pi }{3}} \right)\)

    \(\sqrt {1 - {\rm{\zeta }}{{\rm{\;}}^2}} = \frac{{\sqrt 3 }}{2}\)

    Squaring both sides

    \(1 - {\rm{\zeta }}{{\rm{\;}}^2} = \frac{3}{4}\)

    \(\frac{1}{4} = {\rm{\zeta }}{{\rm{\;}}^2}\)

    \({\rm{\zeta \;}} = \frac{1}{2}\)

    \({\rm{\zeta \;}}{{\rm{\omega }}_n} = + 1\)

    \(\left( {\frac{1}{2}} \right){\omega _n} = 1\)

    ωn = 2
  • Question 2
    1 / -0
    The roots of a second order system are located at -1 + j2 and -1 – j2. What is the value of maximum % overshoot if the system is excited by unit step input?
    Solution

    Roots of a second order system = -1 + j2, -1 – j2 characteristic equation is,

    (s – (-1 + j2)) (s – (-1 – j2)) = 0

    ⇒ (s + 1 – j2) (s + 1 + j2) = 0

    ⇒ (s + 1)2 – (j2)2 = 0

    ⇒ s2 + 2s + 5 = 0

    \(\omega _n^2 = 5\)

    \({\omega _n} = \sqrt 5 \;rad/sec\)

    \(2\xi {\omega _n} = 2 \)

    \( \xi = \frac{2}{{2 \times \sqrt 5 }} = 0.45\)

    Maximum % over-shoot will be:

    \(= {e^{ - \frac{{\xi \pi }}{{\sqrt {1 - {\xi ^2}} }}}} \times 100\)

    \(= {e^{\frac{{ - \pi \left( {0.45} \right)}}{{\sqrt {1 - {{\left( {0.45} \right)}^2}} }}}} \times 100\)

    = 20.53%
  • Question 3
    1 / -0

    A system has a damping ratio of 1.25, a natural frequency of 200 rad/s and DC gain of 1.

    The response of the system to a unit step input is
    Solution

    Concept:

    Standard second-order closed-loop transfer function is given by:

    \(\frac{{C\left( s \right)}}{{R\left( s \right)}} = \frac{{\omega _n^2}}{{{s^2} + 2\xi {\omega _n}s + \omega _n^2}}\) 

    ξ = damping ratio

    ωn = undamped natural frequency

    Analysis:

    Given:

    ξ = 1.25, ωn = 200 rad/sec

    DC Gain: K = 1

    The closed loop transfer function will be:

    \(\frac{{G\left( s \right)}}{{R\left( s \right)}} = \frac{{{{\left( {200} \right)}^2}}}{{{s^2} + 2 \times 1.25 \times 200s + {{\left( {200} \right)}^2}}}\) 

    \(= \frac{{40000}}{{\left( {s + 100} \right)\left( {s + 400} \right)}}\)   

    For a unit step input:

    \(R\left( s \right) = \frac{1}{s}.\) 

    ∴ The response C(s) of the system for a unit step input will be:

    \(C\left( s \right) = \frac{{40000}}{{s\left( {s + 100} \right)\left( {s + 400} \right)}}\) 

    Using partial fraction, the above expression can be written as:

    \(C\left( s \right) = \frac{1}{s} - \frac{4}{{3\left( {s + 100} \right)}} + \frac{1}{{3\left( {s + 400} \right)}}\) 

    Taking the inverse Laplace transform on both the sides, we get:

    \(c\left( t \right) = 1 - \frac{4}{3}{e^{ - 100t}} + \frac{1}{3}{e^{ - 400t}}\) 

  • Question 4
    1 / -0
    A system with transfer function  \(\frac{1}{{\tau s + 1}}\) subjected to a step input takes 15 seconds to reach 60% of the step height. The value of τ (Correct up to two decimal places) is ___ (in sec) 
    Solution

    Given transfer function,

    \(\frac{{C\left( s \right)}}{{R\left( s \right)}} = \frac{1}{{\tau s + 1}}\)

    R(s) = 1/s

    \(\begin{array}{l} \Rightarrow c\left( s \right) = \frac{1}{{s\left( {\tau s + 1} \right)}}\\ \Rightarrow c\left( s \right) = \frac{1}{s} - \frac{\tau }{{\tau s + 1}} \end{array}\)  

    ⇒ c(t) = (1-e-t/τ)

    Given that, c(t) = 0.6

    t = 15

    ⇒ 0.6 = 1 - e-15/τ

    ⇒ e-15/τ = 0.4

     ⇒ e15/τ = 2.5

    ⇒ 15/τ = In (2.5) = 0.916

    ⇒ τ = 16.37 sec
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now