Concept:
Standard second-order closed-loop transfer function is given by:
\(\frac{{C\left( s \right)}}{{R\left( s \right)}} = \frac{{\omega _n^2}}{{{s^2} + 2\xi {\omega _n}s + \omega _n^2}}\)
ξ = damping ratio
ωn = undamped natural frequency
Analysis:
Given:
ξ = 1.25, ωn = 200 rad/sec
DC Gain: K = 1
The closed loop transfer function will be:
\(\frac{{G\left( s \right)}}{{R\left( s \right)}} = \frac{{{{\left( {200} \right)}^2}}}{{{s^2} + 2 \times 1.25 \times 200s + {{\left( {200} \right)}^2}}}\)
\(= \frac{{40000}}{{\left( {s + 100} \right)\left( {s + 400} \right)}}\)
For a unit step input:
\(R\left( s \right) = \frac{1}{s}.\)
∴ The response C(s) of the system for a unit step input will be:
\(C\left( s \right) = \frac{{40000}}{{s\left( {s + 100} \right)\left( {s + 400} \right)}}\)
Using partial fraction, the above expression can be written as:
\(C\left( s \right) = \frac{1}{s} - \frac{4}{{3\left( {s + 100} \right)}} + \frac{1}{{3\left( {s + 400} \right)}}\)
Taking the inverse Laplace transform on both the sides, we get:
\(c\left( t \right) = 1 - \frac{4}{3}{e^{ - 100t}} + \frac{1}{3}{e^{ - 400t}}\)