The given system is described as:
ẋ(t) = Ax(t) + Bu(t)
and y(t) = Cx(t)
Where,
\(A = \left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 2}\end{array}} \right];B = \left[ {\begin{array}{*{20}{c}}1\\0\end{array}} \right];C = \left[ {1\;1} \right]\)
Now, the state model is defined as:
ẋ(t) = Ax(t) + Bu(t) ---(1)
y(t) = Cx(t) + Du(t) ---(2)
Taking Laplace transform of equation (1) with initial condition zero, we get:
sX(s) = AX(s) + BU(s)
X(s) [sI - A] = BU(s)
This can be written as:
X(s) = (sI - A)-1B U(s) ---(3)
Taking the Laplace transform of equation (2), we get:
Y(s) = CX(s) + DU(s)
Substituting value of X(s) from equation (3), we get:
Y(s) = C(sI - A)-1 BU(s) + DU(s)
\(\frac{{Y\left( s \right)}}{{U\left( s \right)}} = C\left[ {{{\left( {sI - A} \right)}^{ - 1}}} \right]B + D\)
Here, D = 0.
Hence, the output transfer function will be:
\(T\left( s \right) = \frac{{Y\left( s \right)}}{{U\left( s \right)}} = C\left[ {{{\left( {sI - A} \right)}^{ - 1}}} \right]B\) ---(4)
For the given system, we have:
\(\left( {sI - A} \right) = \left[ {\begin{array}{*{20}{c}}s&0\\0&s\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 2}\end{array}} \right]\)
\(= \left[ {\begin{array}{*{20}{c}}{s + 1}&0\\0&{s + 2}\end{array}} \right]\)
So,
\({\left( {sI - A} \right)^{ - 1}} = \frac{1}{{\left( {s + 1} \right)\left( {s + 2} \right)}}\left[ {\begin{array}{*{20}{c}}{s + 2}&0\\0&{s + 1}\end{array}} \right]\)
Substituting it in equation (4), we get:
\(\frac{{Y\left( s \right)}}{{U\left( s \right)}} = \left[ {1\;1} \right]\left[ {\begin{array}{*{20}{c}}{\frac{1}{{s + 1}}}&0\\0&{\frac{1}{{s + 2}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\0\end{array}} \right]\)
\(= \left[ {\begin{array}{*{20}{c}}{\frac{1}{{s + 1}}}&{\frac{1}{{s + 2}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\0\end{array}} \right]\)
\(\frac{{Y\left( s \right)}}{{U\left( s \right)}} = \frac{1}{{s + 1}}\)