Self Studies

Control Systems Test 6

Result Self Studies

Control Systems Test 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Identify the matrix that can be a state transition matrix.
    Solution

    State transition matrix, ϕ(t) = eAt

    From the properties of state transition matrix,

    \(\phi \left( 0 \right) = {e^{A\left( 0 \right)}} = I\)

    1. \(\begin{array}{*{20}{c}} {\phi \left( t \right) = \left[ {\begin{array}{*{20}{c}} {{e^{ - t}}}&0\\ 1&{{e^{ - 2t}}} \end{array}} \right]}\\ {\phi \left( o \right) = \left[ {\begin{array}{*{20}{c}} 1&0\\ 1&0 \end{array}} \right] \ne I} \end{array}\)

    2. \(\begin{array}{*{20}{c}} {\phi \left( t \right) = \left[ {\begin{array}{*{20}{c}} {{e^t}}&t\\ 1&{2{e^{ - t}}} \end{array}} \right]}\\ {\phi \left( o \right) = \left[ {\begin{array}{*{20}{c}} 1&0\\ 1&2 \end{array}} \right] \ne I} \end{array}\)

    3. \(\begin{array}{*{20}{c}} {\phi \left( t \right) = \left[ {\begin{array}{*{20}{c}} {{e^t} + {e^{ - t}}}&0\\ 0&{2{e^{ - t}}} \end{array}} \right]}\\ {\phi \left( o \right) = \left[ {\begin{array}{*{20}{c}} 2&0\\ 0&2 \end{array}} \right] \ne I} \end{array}\)

    4. \(\begin{array}{*{20}{c}} {\phi \left( t \right) = \left[ {\begin{array}{*{20}{c}} {{e^t}}&0\\ 0&{{e^{ - 2t}}} \end{array}} \right]}\\ {\phi \left( o \right) = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] = I} \end{array}\)

    Hence option (d) can be state transition matrix.

  • Question 2
    1 / -0
    Let \(A = \left[ {\begin{array}{*{20}{c}} a&1\\ { - 3}&b \end{array}} \right]\) be system matrix of a system with characteristic equation s2 + 5s + 3 = 0 then the value of a + b + ab is _________
    Solution

    Given \(\left| {sI - A} \right| = {s^2} + 5s + 3\)

    where 's' is the Eigen Value of the given matrix.

    The characteristic Equation is obtained by solving for the determinent of sI - A matrix, i.e 

    \(sI - A = \left[ {\begin{array}{*{20}{c}} s&0\\ 0&s \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} a&1\\ { - 3}&b \end{array}} \right]\)

    \(\left[ {\begin{array}{*{20}{c}} {s - a}&{ - 1}\\ 3&{s - b} \end{array}} \right]\)

    |sI - A| = (s - a) (s - b) + 3

    = s2 - (a + b) s + ab + 3

    Comparing this with the given characteristic Equation s2 + 5s + 3 = 0, we get;

    ab + 3 = 3

    ⇒ ab = 0

    Also, -(a + b) = 5

    ⇒ a + b = -5

    ⇒ a + b + ab = -5 + 0 = -5

  • Question 3
    1 / -0

    Consider the following standard state-space description of a linear time-invariant single input single output system:

    \(\dot x = Ax + Bu,y = Cx + Du\)

    Which one of the following statements about the transfer function should be true if D ≠ 0?
    Solution

    ẋ = Ax + Bu

    y = Cx + Du

    Given that, D ≠ 0

    y = Cx + Du

    If input U is bounded, then output y is also bounded. Hence system is stable.
  • Question 4
    1 / -0
    The system Ẋ = AX + Bu with \(A = \left[ {\begin{array}{*{20}{c}}{ - 1}&2\\0&2\end{array}} \right],\;B = \left[ {\begin{array}{*{20}{c}}0\\1\end{array}} \right]\) is
    Solution

    The given system is

    Ẋ = AX + Bu

    Where,

    \(A = \left[ {\begin{array}{*{20}{c}}{ - 1}&2\\0&2\end{array}} \right]\:and\:B = \left[ {\begin{array}{*{20}{c}}0\\1\end{array}} \right]\)

    We determine stability using characteristic equation (i.e. poles or eigenvalues of the system).

    |sI - A| = 0

    \(\left| {\left[ {\begin{array}{*{20}{c}}s&0\\0&s\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}{ - 1}&2\\0&2\end{array}} \right]} \right| = 0\)

    \(\left| {\begin{array}{*{20}{c}}{s + 1}&{ - 2}\\0&{s - 2}\end{array}} \right| = 0\)

    (s + 1)(s - 2) = 0

    s = -1 and s = 2

    i.e. the system has one pole in right half of the s-plane.

    Hence, the system is unstable.

    Now, the controllability matrix is given by:

    CM = [B AB]

    Where

    \(\left[ {AB} \right] = \left[ {\begin{array}{*{20}{c}}{ - 1}&2\\0&2\end{array}} \right]\left[ {\begin{array}{*{20}{c}}0\\1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}2\\2\end{array}} \right]\)

    So,

    \({C_M} = \left[ {\begin{array}{*{20}{c}}0&2\\1&2\end{array}} \right]\)

    |CM| = -2 ≠ 0

    Hence, the system is Controllable.

  • Question 5
    1 / -0

    For the system,

    \(\dot X = \left[ {\begin{array}{*{20}{c}} 2&0\\ 0&4 \end{array}} \right]X + \left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right]u\;;\;Y = \left[ {4\;0} \right]X,\)

    With u as unit impulse and with zero initial state, the output y becomes 4eat such that the value of a is _______

    Solution

    For the given system,

    We have

    \(A = \left[ {\begin{array}{*{20}{c}} 2&0\\ 0&4 \end{array}} \right],\;B = \left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right],\;C = \left[ {4,\;0} \right]\)

    The transfer function of the system is given by:

    \(G\left( s \right) = \frac{{Y\left( s \right)}}{{U\left( s \right)}} = C{\left( {sI - A} \right)^{ - 1}}B\)

    So, we obtain

    \(\left[ {sI - A} \right] = \left[ {\begin{array}{*{20}{c}} s&0\\ 0&s \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 2&0\\ 0&4 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {s - 2}&0\\ 0&{s - 4} \end{array}} \right]\)

    \({\left( {sI - A} \right)^{ - 1}} = \frac{1}{{\left( {s - 2} \right)\left( {s - 4} \right)}}\left[ {\begin{array}{*{20}{c}} {\left( {s - 4} \right)}&0\\ 0&{\left( {s - 2} \right)} \end{array}} \right]\)

    \(= \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\left( {s - 2} \right)}}}&0\\ 0&{\frac{1}{{\left( {s - 4} \right)}}} \end{array}} \right]\)

    Therefore, the transfer function of the system is:

    \(\frac{{Y\left( s \right)}}{{U\left( s \right)}} = \left[ {4\;0} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\left( {s - 2} \right)}}}&0\\ 0&{\frac{1}{{\left( {s - 4} \right)}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right] \)

    \(= \left[ {4\;0} \right]\left[ {\begin{array}{*{20}{c}} {\frac{1}{{\left( {s - 2} \right)}}}\\ {\frac{1}{{\left( {s - 4} \right)}}} \end{array}} \right]\)

    \(\frac{{Y\left( s \right)}}{{U\left( s \right)}} = \frac{4}{{\left( {s - 2} \right)}}\)

    Here, input is unit impulse, i.e. U(s) = 1.

    So, we have the output as:

    \(Y\left( s \right) = \frac{4}{{\left( {s - 2} \right)}}\)

    Taking inverse Laplace transform, we get output in the time domain as:

    y(t) = 4e2t

  • Question 6
    1 / -0
    Given the homogenous state-space equation \(\dot x = \left[ {\begin{array}{*{20}{c}} { - 3}&1\\ 0&{ - 2} \end{array}} \right]x\). The steady-state value of \({x_{ss}} = \mathop {\lim }\limits_{t \to \infty } x\left( t \right)\), given the initial state value of x(0) = [10 - 10]T is
    Solution

    Given the state space representation,

    \(\dot x = \left[ {\begin{array}{*{20}{c}} { - 3}&1\\ 0&{ - 2} \end{array}} \right]x\)

    The steady-state value is given as:

    \({x_{ss}} = \mathop {\lim }\limits_{t \to \infty } x\left( t \right)\)

    Initial condition:

    \(x\left( 0 \right) = \left[ {\begin{array}{*{20}{c}} {10}\\ { - 10} \end{array}} \right]\)

    So, we obtain the matrix as:

    \(A = \left[ {\begin{array}{*{20}{c}} { - 3}&1\\ 0&{ - 2} \end{array}} \right]\)

    And ẋ = Ax

    Taking Laplace transform on both sides, we get:

    sX(s) – x(0) = AX(s)

    X(s) (sI - A) = x(0)

    X(s) = (sI - A)-1x(0)

    By the final value theorem, steady-state value is given by:

    \({x_{ss}} = \mathop {\lim }\limits_{t \to \infty } x\left( t \right) = \mathop {\lim }\limits_{s \to 0} sX\left( s \right)\)

    \({x_{ss}} = \mathop {\lim }\limits_{s \to 0} s\left[ {{{\left( {sI - A} \right)}^{ - 1}}x\left( 0 \right)} \right]\)    ---(1)

    So, we obtain:

    \(\left( {sI - A} \right) = \left[ {\begin{array}{*{20}{c}} s&0\\ 0&s \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} { - 3}&1\\ 0&{ - 2} \end{array}} \right]\)

    \(= \left[ {\begin{array}{*{20}{c}} {s + 3}&{ - 1}\\ 0&{s + 2} \end{array}} \right]\)

    \({\left( {sI - A} \right)^{ - 1}} = \frac{1}{{\left( {s + 2} \right)\left( {s + 3} \right)}}\left[ {\begin{array}{*{20}{c}} {s + 2}&1\\ 0&{s + 3} \end{array}} \right]\)

    \(= \left[ {\begin{array}{*{20}{c}} {\frac{1}{{s + 3}}}&{\frac{1}{{\left( {s + 2} \right)\left( {s + 3} \right)}}}\\ 0&{\frac{1}{{s + 2}}} \end{array}} \right]\)

    Substituting it in equation (1), we get the steady-state value as:

    \({x_{ss}} = \mathop {\lim }\limits_{s \to 0} s\left[ {\begin{array}{*{20}{c}} {\frac{1}{{s + 3}}}&{\frac{1}{{\left( {s + 2} \right)\left( {s + 3} \right)}}}\\ 0&{\frac{1}{{s + 2}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {10}\\ { - 10} \end{array}} \right]\)

    \({x_{ss}} = \left[ {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right]\)

  • Question 7
    1 / -0

    A system is described by the dynamic equation ẋ(t) = A ⋅ x(t) + B ⋅ u(t), y(t) = C.x(t) where

    \(A = \left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 2}\end{array}} \right],\;B = \left[ {\begin{array}{*{20}{c}}1\\0\end{array}} \right]\) and C = [1 1]

    The output transfer function \(\frac{{Y\left( s \right)}}{{U\left( s \right)}}\) is
    Solution

    The given system is described as:

    ẋ(t) = Ax(t) + Bu(t)

    and y(t) = Cx(t)

    Where,

    \(A = \left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 2}\end{array}} \right];B = \left[ {\begin{array}{*{20}{c}}1\\0\end{array}} \right];C = \left[ {1\;1} \right]\)

    Now, the state model is defined as:

    ẋ(t) = Ax(t) + Bu(t)       ---(1)

    y(t) = Cx(t) + Du(t)       ---(2)

    Taking Laplace transform of equation (1) with initial condition zero, we get:

    sX(s) = AX(s) + BU(s)

    X(s) [sI - A] = BU(s)

    This can be written as:

    X(s) = (sI - A)-1B U(s)       ---(3)

    Taking the Laplace transform of equation (2), we get:

    Y(s) = CX(s) + DU(s)

    Substituting value of X(s) from equation (3), we get:

    Y(s) = C(sI - A)-1 BU(s) + DU(s)

    \(\frac{{Y\left( s \right)}}{{U\left( s \right)}} = C\left[ {{{\left( {sI - A} \right)}^{ - 1}}} \right]B + D\)

    Here, D = 0.

    Hence, the output transfer function will be:

    \(T\left( s \right) = \frac{{Y\left( s \right)}}{{U\left( s \right)}} = C\left[ {{{\left( {sI - A} \right)}^{ - 1}}} \right]B\)       ---(4)

    For the given system, we have:

    \(\left( {sI - A} \right) = \left[ {\begin{array}{*{20}{c}}s&0\\0&s\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 2}\end{array}} \right]\)

    \(= \left[ {\begin{array}{*{20}{c}}{s + 1}&0\\0&{s + 2}\end{array}} \right]\)

    So,

    \({\left( {sI - A} \right)^{ - 1}} = \frac{1}{{\left( {s + 1} \right)\left( {s + 2} \right)}}\left[ {\begin{array}{*{20}{c}}{s + 2}&0\\0&{s + 1}\end{array}} \right]\)

    Substituting it in equation (4), we get:

    \(\frac{{Y\left( s \right)}}{{U\left( s \right)}} = \left[ {1\;1} \right]\left[ {\begin{array}{*{20}{c}}{\frac{1}{{s + 1}}}&0\\0&{\frac{1}{{s + 2}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\0\end{array}} \right]\)

    \(= \left[ {\begin{array}{*{20}{c}}{\frac{1}{{s + 1}}}&{\frac{1}{{s + 2}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1\\0\end{array}} \right]\)

    \(\frac{{Y\left( s \right)}}{{U\left( s \right)}} = \frac{1}{{s + 1}}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now