Self Studies

Communications Test 1

Result Self Studies

Communications Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let m1(t) and m2(t) be two message signals and let x1(t) and x2(t) be the corresponding modulated version:

    Consider two statements:

    S1: When the combined message signal m1(t) and m2(t) DSB modulates a carrier Ac cos 2πfct, the result is the sum of the DSB amplitude modulated signals x1(t) and x2(t)

    S2: When the combined message signal m1(t) and m2(t) frequency modulates a carrier, the modulated signal is equal to the sum of x1(t) and x2(t).

    Which among the above statements are correct?
    Solution

    Analysis:

    For a DSB modulator, the modulated signal is expressed as:

    x1(t) = c(t) m1(t)

    x2(t) = c(t) m2(t)

    x1(t) + x2(t) = c(t) (m1(t) + m2(t))       ---(1)

    When the combined signal m1(t) and m2(t) is passed, we get the DSB modulated signal as:

    xDSB(t) = c(t) (m1(t) + m2(t))        ---(2)

    Since Equation (1) and (2) are giving the same signal, statement S1 is correct.

    When m1(t) is FM modulated, the modulated wave will be:

    \({x_1}\left( t \right) = {A_c}\cos \left[ {2\pi {f_c}t + 2\pi {k_t}\;\mathop \smallint \limits_{ - \infty }^t {m_1}\left( \tau \right)d\tau } \right]\) 

    Similarly, for a signal m2(t), FM output will be:

    \({x_2}\left( t \right) = {A_c}\cos \left[ {2\pi {f_c}t + 2\pi {k_f}\;\mathop \smallint \limits_{ - \infty }^t {m_2}\left( \tau \right)d\tau } \right]\) 

    When m1(t) and m2(t) are combined and are frequency modulated, we get:

    \({x_{FM}}\left( t \right) = {A_c}\cos \left[ {2\pi {f_c}t + 2\pi {k_f}\mathop \smallint \limits_{ - \infty }^t \left( {{m_1}\left( t \right) + {m_2}\left( t \right)} \right)dt} \right]\;\) 

    For FM, we observe that:

    x1(t) + x2(t) ≠ xFM(t)

    Statement 2 (S2) is not correct.

    Note: This is because FM (Frequency modulation) is a non-linear modulation technique and AM modulation is a linear modulation technique.
  • Question 2
    1 / -0

    A transmitter angle modulates the signal using a carrier frequency of 1 kHz.

    If the transmitter output is given by x(t) = cos (2π 1100t); then the phase and frequency deviation will be respectively
    Solution

    Concept:

    A general angle modulated wave is defined as:

    S(t) = Ac cos (ωc t + km(t))

    The phase deviation is:

    θ(t) = km(t)

    and the frequency deviation is:

    \({\rm{\Delta }}f = \frac{1}{{2\pi }}k\frac{d}{{dt}}\left( {m\left( t \right)} \right)\)

    Application:

    Given carrier frequency = 1 kHz, i.e.

    ωc = 2π × 1000 rad/sec

    The output signal is given as:

    x(t) = cos (2π 1100t)

    This can be written as:  

    x(t) = cos (2π 1000t + 2π 100t)

    = cos (2πfct + 200πt)

    So, we have the phase angle as:

    θ(t) = 200πt

    ∴ The phase deviation as a function of time will be:

    Δθ = θ(t) = 200 πt

    And the frequency deviation will be:

    \({\rm{\Delta }}f = \frac{1}{{2\pi }} \cdot \frac{{d\theta \left( t \right)}}{{dt}}\)

    \( = \frac{1}{{2\pi }} \times 200\pi \)

    = 100 Hz
  • Question 3
    1 / -0
    In SSB modulation system, if signal (cos 30 t) is modulated with a carrier signal of frequency 850 rad/sec then the expression for the lower side band is
    Solution

    Concept:

    The general expression of an SSB modulated signal is:

    SSSB(t) = m(t) cosωct ± m̂(t) sinωct

    A plus sign implies the Lower-sideband signal and minus sign implies an Upper sideband signal.

    m(t) = Message signal

    ωc = Carrier signal frequency

    m̂(t) = Hilbert transform of the message signal

    Hilbert Transformer transforms the input signal as:

    1) The magnitude of the frequency component present in x(t) remains unchanged when it is passed through the system.

    2) The phase of the positive frequency components is shifted by -π/2 and that of negative frequency components is shifted by +π/2.

    Application:

    m(t) = cos 30t and ωc = 850 rad/sec

    The Hilbert transform of the above signal will be:

    m̂(t) = cos (30t – 90°) = sin 30 t

    For lower side band, the SSB expression will be:

    sL(t) = m(t) cos ωc t + m̂(t) sin ωct

    Putting on the respective function values, we get:

    sL(t) = cos 30t cos 850t + sin 30t sin 850t

    sL(t) = cos (850 - 30)t

    sL(t) = cos 820 t  
  • Question 4
    1 / -0
    Suppose we wish to transmit the signal x(t) = sin 200πt + 2 sin 400πt using a modulation that create the signal g(t) = x(t) sin 400πt. If the product g(t) sin 400πt is passed through an ideal LPF with cutoff frequency 400π and passband gain of 2, the signal obtained at the output of the LPF is
    Solution

    The given modulating signal is:

    x(t) = sin (200πt) + 2 sin (400πt)

    Also, the modulation signal is given as:

    g(t) = x(t) sin (400πt)

    The above signal is then multiplied with sin 400πt to get:

    g(t) sin 400 πt = x(t) sin (400 πt) sin (400πt)

    = x(t) sin2 400 πt

    Substituting x(t) in the above expression, we get:

    x(t) sin2 400 πt = (sin (200πt) + 2 sin (400πt)) sin2 400 πt

    \( = \left[ {\sin \left( {200\pi t} \right) + 2\sin \left( {400\pi t} \right)} \right]\left[ {\frac{{1 - \cos \left( {800\pi t} \right)}}{2}} \right]\) 

    \( = \frac{1}{2}\left[ {\sin \left( {200\pi t} \right) + 2\sin \left( {400\pi t} \right) - \sin \left( {200\pi t} \right)\cos \left( {800\pi t} \right) - 2\sin \left( {400\;\pi t} \right)\cos \left( {800\pi t} \right)} \right]\) 

    \( = \frac{1}{2}\sin \left( {200\pi t} \right) + \sin \left( {400\;\pi t} \right) - \frac{1}{4}[\sin \left( {1000\pi t} \right) - \sin \left( {600\pi t} \right)] - \frac{1}{2}\left[ {\sin \left( {1200\;\pi t - \sin \left( {400\pi t} \right)} \right)} \right]\) 

    Now, the above signal is passed through a low pass filter with a passband gain of 2 and cut-off frequency ω0 = 400π

    ∴ Only the frequency of 200π will be allowed to pass through the LPF.

    So, the output signal will be:

    \(y\left( t \right) = \left[ {\frac{1}{2}\sin \left( {200\pi t} \right)} \right] \times \left| {H\left( f \right)} \right|\) 

    Where |H(f)| is the passband gain given as:

    |H(f)| = 2

    ∴ The output will be:

    \(y\left( t \right) = \left[ {\frac{1}{2}\sin \left( {200\pi t} \right)} \right] \times 2\) 

    = sin (200πt)

    Note: At the cut off frequency, the passband gain of low pass filter shows discontinuity. ∴ We will consider only the signal below this frequency to be passed through LPF.
  • Question 5
    1 / -0

    An AM modulator for a single tone modulating signal gives an output :

    x(t) = A cos 400 πt + Bcos 380 πt + Bcos 420 πt

    The carrier power is 100 W and the efficiency is 40%. The values of A and B are
    Solution

    Concept:

    The general expression for an amplitude modulated signal, with single tone modulating signal, is defined as:

    SAM(t) = AC (1 + cos ωmt) cos ωc t

    = Ac cos ωc + Ac cos ωmt cos ωct

    \( = {A_C}\cos {\omega _c}t + \frac{{{A_c}}}{2}\cos \left( {{\omega _c} - {\omega _m}} \right)t + \frac{{{A_c}}}{2}\cos \left( {{\omega _c} + {\omega _m}} \right)t\) 

    Also, the modulation efficiency of an AM signal is defined as the ratio of the power with the sidebands to the total power i.e.

    \(\eta = \frac{{{P_{sb}}}}{{{P_t}}} \times 100\) 

    Analysis:

    Given:

    xAM(t) = A cos (400πt) + B cos (380 πt) + B cos (420 πt) 

    Comparing this with the general expression, the above can be written as:

    xAM(t) = A cos 400 πt + B cos (400 π – 20 π)t + B cos (400 π + 20 π)t

    The carrier signal is, therefore:

    c(t) = A cos 400πt

    And the two sidebands are:

    Sideband 1: B cos (380 πt)

    Sideband 2: B cos (420 πt)

    The carrier power will be:

    \({P_c} = \frac{{{A^2}}}{2}\) 

    Given Pc = 100, we can write:

    \(100 = \frac{{{A^2}}}{2}\) 

    A2 = 200

    A = 14.14

    Now, the total sideband power will be:

    \({P_{sb}} = \frac{{{B^2}}}{2} + \frac{{{B^2}}}{2}\) 

    PSB = B2

    Given modulation efficiency = 40% = 0.4

    We can write:

    \(0.4 = \frac{{{P_{SB}}}}{{{P_t}}} = \frac{{{P_{SB}}}}{{{P_C} + {P_{SB}}}}\) 

    \(0.4 = \frac{{{B^2}}}{{100 + {B^2}}}\) 

    40 + 0.4 B2 = B2

    40 = 0.6 B2

    \({B^2} = \frac{{400}}{6}\) 

    B = 8.16

    Alternate method:

    The power efficiency of an AM signal with single tone modulation is given by:

    \({\eta _{AM}} = \frac{{{\mu ^2}}}{{2 + {\mu ^2}}}\) 

    μ = Modulation index

    Given output of AM modulator is:

    x(t) = A cos (400 πt) + B cos (380 πt) + B cos (240 πt)

    Appying trigonometric property, the above equation becomes:

    x(t) = A cos (400 πt) + 2 B cos (400 πt) cos (20 πt)

    \( = A\left[ {1 + \frac{{2B}}{A}\cos \left( {20\pi t} \right)} \right]\cos \left( {400\;\pi t} \right)\) 

    From the above, we get the carrier power as:

    \({P_C} = \frac{{{A^2}}}{2}\) 

    And the modulation index (μ) as:

    \(\mu = \frac{{2B}}{A}\)         ---(1)

    Now,

    PC = 100 W (Given)

    \(\therefore 100 = \frac{{{A^2}}}{2}\) 

    A = 14.14

    ηAM = 40% = 0.4

    \(0.4 = \frac{{{\mu ^2}}}{{2 + {\mu ^2}}}\) 

    0.8 + 0.4 μ2 = μ2

    0.8 = 0.6 μ2

    \({\mu ^2} = \;\frac{4}{3}\) 

    \(\mu = \frac{2}{{\sqrt 3 }}\) 

    Substituting this in equation (1), we get:

    \(\frac{2}{{\sqrt 3 }} = \frac{{2B}}{A}\) 

    \(B = \frac{A}{{\sqrt B }} = \frac{{14.14}}{{\sqrt 3 }}\) 

    B = 8.16
  • Question 6
    1 / -0
    A carrier wave 20 cos (8π × 106t) is frequency modulated by a modulating signal 2 cos (2π × 103t) + cos (3π × 103t) + 5 cos (8π × 103t). If kf = 40 kHz/volt then bandwidth of the modulated signal is ________ kHz.
    Solution

    Concept:

    The bandwidth of the multitone Angle modulated signal is given by:

    B.W = 2(1 + β) fmax

    Where, fmax = max (fm1, fm2, …)

    Calculation:

    fi = fc­ + kf m(t)

    \(= \left( {4 \times {{10}^6}} \right) + 40 \times {10^3}\left( {\frac{{Hz}}{v}} \right)\left[ {2\cos \left( {2\pi \times {{10}^3}t} \right) + \cos \left( {3\pi \times {{10}^3}t} \right) + 5\cos \left( {8\pi \times {{10}^3}t} \right)} \right]\) 

    \({f_i} = \left( {4 \times {{10}^6}} \right) + 80 \times {10^3}\cos \left( {2\pi \times {{10}^3}t} \right) + 40 \times {10^3}\left( {2\pi \times {{10}^3}t} \right) + 200 \times {10^3}\cos \left( {8\pi \times {{10}^3}t} \right)\) 

    Δf = 80 × 103 + 40 × 103 + 200 × 103

    ⇒ (320 × 103) Hz

    \(\beta = \frac{{{\rm{\Delta }}f}}{{{f_{max}}}} = \frac{{320 \times {{10}^3}}}{{4 \times {{10}^3}}} = 80\) 

    Bandwidth = 2 (1 + 80) 4 × 103

    = 648 kHz
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now