Concept:
The general expression for an amplitude modulated signal, with single tone modulating signal, is defined as:
SAM(t) = AC (1 + cos ωmt) cos ωc t
= Ac cos ωc + Ac cos ωmt cos ωct
\( = {A_C}\cos {\omega _c}t + \frac{{{A_c}}}{2}\cos \left( {{\omega _c} - {\omega _m}} \right)t + \frac{{{A_c}}}{2}\cos \left( {{\omega _c} + {\omega _m}} \right)t\)
Also, the modulation efficiency of an AM signal is defined as the ratio of the power with the sidebands to the total power i.e.
\(\eta = \frac{{{P_{sb}}}}{{{P_t}}} \times 100\)
Analysis:
Given:
xAM(t) = A cos (400πt) + B cos (380 πt) + B cos (420 πt)
Comparing this with the general expression, the above can be written as:
xAM(t) = A cos 400 πt + B cos (400 π – 20 π)t + B cos (400 π + 20 π)t
The carrier signal is, therefore:
c(t) = A cos 400πt
And the two sidebands are:
Sideband 1: B cos (380 πt)
Sideband 2: B cos (420 πt)
The carrier power will be:
\({P_c} = \frac{{{A^2}}}{2}\)
Given Pc = 100, we can write:
\(100 = \frac{{{A^2}}}{2}\)
A2 = 200
A = 14.14
Now, the total sideband power will be:
\({P_{sb}} = \frac{{{B^2}}}{2} + \frac{{{B^2}}}{2}\)
PSB = B2
Given modulation efficiency = 40% = 0.4
We can write:
\(0.4 = \frac{{{P_{SB}}}}{{{P_t}}} = \frac{{{P_{SB}}}}{{{P_C} + {P_{SB}}}}\)
\(0.4 = \frac{{{B^2}}}{{100 + {B^2}}}\)
40 + 0.4 B2 = B2
40 = 0.6 B2
\({B^2} = \frac{{400}}{6}\)
B = 8.16
Alternate method:
The power efficiency of an AM signal with single tone modulation is given by:
\({\eta _{AM}} = \frac{{{\mu ^2}}}{{2 + {\mu ^2}}}\)
μ = Modulation index
Given output of AM modulator is:
x(t) = A cos (400 πt) + B cos (380 πt) + B cos (240 πt)
Appying trigonometric property, the above equation becomes:
x(t) = A cos (400 πt) + 2 B cos (400 πt) cos (20 πt)
\( = A\left[ {1 + \frac{{2B}}{A}\cos \left( {20\pi t} \right)} \right]\cos \left( {400\;\pi t} \right)\)
From the above, we get the carrier power as:
\({P_C} = \frac{{{A^2}}}{2}\)
And the modulation index (μ) as:
\(\mu = \frac{{2B}}{A}\) ---(1)
Now,
PC = 100 W (Given)
\(\therefore 100 = \frac{{{A^2}}}{2}\)
A = 14.14
ηAM = 40% = 0.4
\(0.4 = \frac{{{\mu ^2}}}{{2 + {\mu ^2}}}\)
0.8 + 0.4 μ2 = μ2
0.8 = 0.6 μ2
\({\mu ^2} = \;\frac{4}{3}\)
\(\mu = \frac{2}{{\sqrt 3 }}\)
Substituting this in equation (1), we get:
\(\frac{2}{{\sqrt 3 }} = \frac{{2B}}{A}\)
\(B = \frac{A}{{\sqrt B }} = \frac{{14.14}}{{\sqrt 3 }}\)
B = 8.16