Self Studies

Communications Test 6

Result Self Studies

Communications Test 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For a rate 1/3 repetition code, the generator matrix is:
    Solution

    The generator matrix for a rate 1/n repetition code has one column and ‘n’ rows with all elements unity. So, we have the generator matrix for rate 1/3 repetition code as:

    \(\left[ G \right] = \left[ {\begin{array}{*{20}{c}} 1\\ 1\\ 1 \end{array}} \right]\)

  • Question 2
    1 / -0

    Consider the following statement regarding multiple access techniques.

    (I) In FDMA each user is assigned a unique frequency which can be shared

    (II) In TDMA a single frequency is shared with several users and all transmit in different slots per time

    Choose the correct option

    Solution

    In FDMA each user is assigned a particular frequeny Which cannot be used by other users.

    In TDMA all users transmit using same carrier frequency but in different time slots.

  • Question 3
    1 / -0

    A parity check code has the parity check matrix

    \(\left[ H \right] = \left[ {\begin{array}{*{20}{c}}1&1&0&1&1&0&0\\1&1&1&0&0&1&0\\0&1&1&1&0&0&1\end{array}} \right]\) 

    The generator matrix for the parity check code is
    Solution

    We have the parity check matrix as:

    \(\left[ H \right] = \left[ {\begin{array}{*{20}{c}}1&1&0&1&1&0&0\\1&1&1&0&0&1&0\\0&1&1&1&0&0&1\end{array}} \right]\) 

    This can be written as:

    \(\left[ {\begin{array}{*{20}{c}}{{h_{11}}}&{{h_{12}}}&{{h_{13}}}&{{h_{14}}}&1&0&0\\{{h_{21}}}&{{h_{22}}}&{{h_{23}}}&{{h_{24}}}&0&1&0\\{{h_{31}}}&{{h_{32}}}&{{h_{33}}}&{{h_{44}}}&0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&1&0&1&1&0&0\\1&1&1&0&0&1&0\\0&1&1&1&0&0&1\end{array}} \right]\) 

    Thus, the generator matrix for the parity check matrix is obtained as:

    \(\left[ G \right] = \left[ {\begin{array}{*{20}{c}}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\\{{h_{11}}}&{{h_{12}}}&{{h_{13}}}&{{h_{14}}}\\{{h_{21}}}&{{h_{22}}}&{{h_{23}}}&{{h_{24}}}\\{{h_{31}}}&{{h_{32}}}&{{h_{33}}}&{{h_{34}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\\1&1&0&1\\1&1&1&0\\0&1&1&1\end{array}} \right]\) 

  • Question 4
    1 / -0
    If the hamming distance in code is 5, then the maximum number of errors correctable is:
    Solution

    dmin=m

    for error correction

    dmin ≥ 2t+1

    \(t \le \frac{{m - 1}}{2}\)

    t≤ 2

    so maximum correctable errors are 2

  • Question 5
    1 / -0

    A cellular operator is allocated 12.5 MHZ for each simplex band and if total spectrum allocation (Bt) = 12.5 MHz and guard Band (Bguard) = 10KHz. and channel bandwidth is 30kHz. Then the number of channel available in FDMA is _________.

    Solution

    The number of channels is FDMA is given by

    \(N = \frac{{{B_t} - 2Bguard}}{{{B_c}}}\) 

    \( = \frac{{12.5 \times {{10}^6} - 2\left( {10 \times {{10}^3}} \right)}}{{30 \times {{10}^3}}}\) 

    = 416.

  • Question 6
    1 / -0

    For a linear (6, 3) code whose parity matrix is given which statement is true

    \(T = \left[ {\begin{array}{*{20}{c}} 1&1&0\\ 1&1&1\\ 1&0&1 \end{array}} \right]\)

    Solution

    Concept:

    The error-correcting and detecting capability is given by the hamming distance

    Error detection ≤  dmin - 1

    Error correction ≤ \(\frac{{\left( {{d_{min}} - 1} \right)}}{2}\)

    Application:

    Parity matrix

    \({P^T} = \left[ {\begin{array}{*{20}{c}} 1&1&0\\ 1&1&1\\ 1&0&1 \end{array}} \right]\)

    Generator matrix

    G = [IK PT]

    \(G = \left[ {\begin{array}{*{20}{c}} 1&0&0&1&1&0\\ 0&1&0&1&1&1\\ 0&0&1&1&0&1 \end{array}} \right]\)

    Code words

    C = dG

    All possible code words

    Message word

    Code

    Hamming weight

    000

    000000

    0

    001

    001101

    3

    010

    010111

    4

    011

    011010

    3

    100

    100110

    3

    101

    101011

    4

    110

    110001

    3

    111

    111100

    4

     

    Minimum weight of non – zero words = 3

    dmin = 3

    Error detection ≤  3 – 1

    Error detection ≤  2

    Error correction ≤  \(\frac{{{d_{min}} - 1}}{2}\)

    \(≤ \frac{{2 - 1}}{2}\)

    ≤ 1

    Hence the code can detect at most 2 errors and correct 1
  • Question 7
    1 / -0

    A CDMA system is designed based on DS spectrum with processing gain of 1000 and BPSK modulation scheme. If user has equal power and desired level of SNR is 10.5 dB, the number of users will be

    Solution

    For CDMA \(\frac{{{E_b}}}{{{N_o}}} = \frac{{W/R}}{{{N_u} - 1}}\)

    \(10\log (\frac{{{E_b}}}{{{N_o}}}) = \;10.5dB\) 

    Eb/No = 11.3

    \({N_u} = \frac{{W/R}}{{Eb/{N_o}}} + 1 = \frac{{1000}}{{11.3}} + 1\) 

    = 89

  • Question 8
    1 / -0

    A GSM uses 25 MHz for forward link which is divided into ratio channels of 200 kHz. If 8 speech channel are supported on a single radio channel and if there are no guard bands. Then the number of users that can be accommodated are _________

    Solution

    Number of users m = 8

     Total spectrum (Bw) Btot = 25 MHz

    Guard Band, Bguard = 0

    Number of users in GSM:

    \(N = \frac{{m\left( {{B_{tot}} - 2{B_{guard}}} \right)}}{{{B_c}}}\) 

    \(N = \frac{{8\left( {25 \times {{10}^6}} \right)}}{{200 \times {{10}^3}}}\) 

    N = 1000

  • Question 9
    1 / -0
    The number of rows and columns in the parity check matrix for a (15, 11) signal error-correcting codes, will be respectively:
    Solution

    We have the (15, 11) single error-correcting codes, i.e. the word length is:

    n = 15

    and the length of the information symbol is:

    k = 11

    So, we get the length of the parity check symbol as:

    r = n – k = 15 – 11 = 4

    The parity check matrix for error-correcting codes is defined as:

    \(\left[ H \right] = \left[ {\begin{array}{*{20}{c}}{{h_{11}}}&{{h_{12}}}& \cdots &{{h_{1K}}}&1&0& \cdots &0\\{{h_{21}}}&{{h_{22}}}& \cdots &{{h_{2K}}}&0&1& \cdots &0\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\{{h_{r1}}}&{{h_{r2}}}& \cdots &{{h_{rK}}}&0&0& \cdots &1\end{array}} \right]\) 

    Thus, the number of rows in the parity check matrix will be:

    r = 4, and the number of columns will be:

    r + k = 15

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now