Self Studies

Engineering Mathematics Test 1

Result Self Studies

Engineering Mathematics Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The Eigen values of the matrix \(\left[ {\begin{array}{*{20}{c}}3&0&0\\0&2&{ - 3}\\0&1&{ - 2}\end{array}} \right]\) are
    Solution

    Concept:

    If A is any square matrix of order n, we can form the matrix [A – λI], where I is the nth order unit matrix. The determinant of this matrix equated to zero i.e. |A – λI| = 0 is called the characteristic equation of A.

    The roots of the characteristic equation are called Eigen values or latent roots or characteristic roots of matrix A.

    Properties of Eigen values:

    The sum of Eigen values of a matrix A is equal to the trace of that matrix A

    The product of Eigen values of a matrix A is equal to the determinant of that matrix A

    Calculation:

    Let \(A = \left[ {\begin{array}{*{20}{c}}3&0&0\\0&2&{ - 3}\\0&1&{ - 2}\end{array}} \right]\)

    |A – λI| = 0

    \(\Rightarrow \left| {\begin{array}{*{20}{c}}{3 - \lambda }&0&0\\0&{2 - \lambda }&{ - 3}\\0&1&{ - 2 - \lambda }\end{array}} \right| = 0\)

    ⇒ (3 – λ) [ (2 – λ) (-2 – λ) – (-3)] = 0

    ⇒ (3 – λ) [-4 – 2 λ + 2 λ + λ2 + 3] = 0

    ⇒ (3 – λ) [λ2 – 1] = 0

    ⇒ λ = 3, 1, –1

    Eigen values of given matrix = 3, 1, –1

    Alternate Method:

    Sum of Eigen values of given matrix = Trace = 3 + 2 - 2 = 3

    From the options -1, 1 and 3 is correct.
  • Question 2
    1 / -0

    2x + 3y + 5z = 9

    7x + 3y – 2z = 8

    2x + 3y + λz = 7

    For unique solution, the value of ‘λ’ should not be equal to
    Solution

    Explanation:

    For unique solution, the coefficient matrix rank should be 3.

    \(\left[ {\begin{array}{*{20}{c}}2&3&5\\7&3&{ - 2}\\2&3&\lambda \end{array}} \right]\left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}9\\8\\7\end{array}} \right]\) 

    Thus,

    \(\left| {\begin{array}{*{20}{c}}2&3&5\\7&3&{ - 2}\\2&3&\lambda \end{array}} \right| \ne 0\) 

    2 (3λ + 6) – 3 (7λ + 4) + 5 (21 - 6) ≠ 0

    6λ + 12 – 21λ - 12 + 75 ≠ 0

    -15λ + 75 ≠ 0

    -15 (λ - 5) ≠ 0

    Thus, λ ≠ 5
  • Question 3
    1 / -0

    Find the value of λ for which the vectors given are linearly dependent:

    \(\begin{array}{l} \vec a = i + 2\hat j + 3\hat k\\ \vec b = 4i + \lambda \hat j + 6\hat k\\ \vec c = 3i + 4\hat j + 5\hat k \end{array}\)

    Solution

    Concept:

    Methods to check Linearly dependent or Linearly Independent vectors:

    Let x1, x2, x3 ….. xr are the n-vectors.

    Consider A = [x1, x2, x3…. xr]n × r

    General Method:

    1) of ρ(A) = number of vector (R), then Linearly Independent.

    2) If ρ(A) < number of vector (r), then Linearly Dependent

    Matrix method:

    If A is a square matrix :

    1) |A| ≠ 0, vectors are Linearly Independent.

    2) If |A| = 0, vectors are Linearly Dependent.

    Calculation:

    For linearly dependent vectors, |A| = 0

    ⇒ \(A = \left[ {\begin{array}{*{20}{c}} 1&2&3\\ 4&\lambda &6\\ 3&4&5 \end{array}} \right]\)

    |A| = 1(5λ - 24) – 2(20 - 18) + 3 (16 – 3λ)

    |A| = 5λ – 24 – 4 + 48 – 9λ λ = 5

    Hence for the vectors to be linearly dependent λ = 5.

  • Question 4
    1 / -0

    The number of distinct real values of x for which the matrix \(\left( {\begin{array}{*{20}{c}} x&1&1\\ 1&x&1\\ 1&1&x \end{array}} \right)\) is singular is

    Solution

    Explanation:

    \(A = \left[ {\begin{array}{*{20}{c}} x&1&1\\ 1&x&1\\ 1&1&x \end{array}} \right]\)

    Matrix A is said to be singular when |A| = 0

    \( \Rightarrow \left| {\begin{array}{*{20}{c}} x&1&1\\ 1&x&1\\ 1&1&x \end{array}} \right| = 0\)

    ⇒ x(x2 - 1) – 1 (x - 1) + 1 (1 - x) = 0

    ⇒ x3 – x – x + 1 + 1 – x = 0

    ⇒ x3 – 3x + 2 = 0

    ⇒ x = 1, 1, -2.

    The number of district real values of x = 2.

  • Question 5
    1 / -0
    If \(A = \left[ {\begin{array}{*{20}{c}}1&1&3\\5&2&6\\{ - 2}&{ - 1}&{ - 3}\end{array}} \right]\), then the value of A14 + 3A – 2I is
    Solution

    Characteristic equation: |A – λI| = 0

    \(\Rightarrow \left| {\left[ {\begin{array}{*{20}{c}}1&1&3\\5&2&6\\{ - 2}&{ - 1}&{ - 3}\end{array}} \right] - \lambda \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]} \right| = 0 \)

    \( \Rightarrow \left| {\begin{array}{*{20}{c}}{1 - \lambda }&1&3\\5&{2 - \lambda }&6\\{ - 2}&{ - 1}&{ - 3 - \lambda }\end{array}} \right| = 0\)

    ⇒ (1 – λ) (-6 + 3λ – 2λ + λ2 + 6) – 1(-15 – 5λ + 12) + 3(-5 + 4 – 2λ) = 0

    ⇒ λ3 = 0

    According to Cayley Hamilton theorem every square matrix satisfies its characteristic polynomial.

    ⇒ A3 = 0

    A14 + 3A – 2I = A12 A2 + 3A – 2I = 3A – 2I

    \(= 3\left[ {\begin{array}{*{20}{c}}1&1&3\\5&2&6\\{ - 2}&{ - 1}&{ - 3}\end{array}} \right] - 2\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&3&9\\{15}&4&{18}\\{ - 6}&{ - 3}&{ - 11}\end{array}} \right]\)

  • Question 6
    1 / -0
    A 2 × 2 matrix is given as \(\left[ {\begin{array}{*{20}{c}} 1&p\\ q&2 \end{array}} \right].\) If the eigen values of the matrix are real and positive, then which one of the following relations should be satisfied?
    Solution

    Characteristic equation is given by

    \(\left| {A - \lambda I} \right| = 0\)

    \(\therefore \left| {\begin{array}{*{20}{c}} {1 - \lambda }&p\\ q&{2 - \lambda } \end{array}} \right| = 0\)

    ⇒ (1 - λ) (2 - λ) – pq = 0

    λ2 – 3λ + 2 – pq = 0

    \(\therefore {\rm{\lambda }} = \frac{{3 \pm \sqrt {9 - 4\left( {2 - pq} \right)} }}{2}\)

    Now, for eigen values to be real

    9 – 4 (2 - pq) ≥ 0

    9 – 8 + 4 pq ≥ 0

    ⇒ 4 pq ≥ - 1

    \(pq \ge - \frac{1}{4}\)

    Now, for eigen values to be positive,

    λ1 . λ2 > 0

    ⇒ 2 – pq > 0

    [Product of roots of equation ax2 + bx + c = 0 ⇒ c/a ]

    ∴ pq ≤ 2.

    Now, for eigenvalues to be real and positive,

    \(- \frac{1}{4} \le pq < 2\)
  • Question 7
    1 / -0
    Consider a Matrix \(M = {u^T}{v^T}\) where \(u = \left( {1\;1\;2} \right)\;and\;v = \;\left( {\begin{array}{*{20}{c}} 1\\ 2\\ 1 \end{array}} \right)\) also \({u^T}\) denotes the transpose of matrix u. Find the largest eigenvalue of M?
    Solution

    \({u^T}\) = \(\left( {\begin{array}{*{20}{c}} 1\\ 1\\ 2 \end{array}} \right)\) and \({v^T}\) = (1 2 1)

    \(M = {u^T}{v^T}\)

    \(M = \left( {\begin{array}{*{20}{c}} 1\\ 1\\ 2 \end{array}} \right){\rm{\;}}\left( {1\;2\;1} \right)\)

    \(M = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 1&2&1\\ 1&2&1\\ 2&4&2 \end{array}} \right]\)

    Characteristic equation is given

    \(\left| {\begin{array}{*{20}{c}} {1 - \lambda }&2&1\\ 1&{2 - \lambda }&1\\ 2&4&{2 - \lambda } \end{array}} \right| = 0\)

    \(\lambda ^3 - 5\lambda ^2 =0\)

    \(\lambda = 0\;or\;\lambda = 5\)

    Therefore largest value is 5.

  • Question 8
    1 / -0

    The value of α for which the system of equations

    x – y – 3z = 3

    2x + z = 0

    -2y -7z = α

    has a solution is ________.
    Solution

    Concept:

    Consider the system of m linear equations

    a11 x1 + a12 x2 + … + a1n xn = b1

    a21 x1 + a22 x2 + … + a2n xn = b2

    am1 x1 + am2 x2 + … + amn xn = bm

    The above equations containing the n unknowns x1, x2, …, xn. To determine whether the above system of equations is consistent or not, we need to find the rank of following matrices.

    \(A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}& \ldots &{{a_{1n}}}\\{{a_{21}}}&{{a_{22}}}& \ldots &{{a_{2n}}}\\ \ldots & \ldots & \ldots & \ldots \\{{a_{m1}}}&{{a_{m2}}}& \ldots &{{a_{mn}}}\end{array}} \right]\) and \(\left[ {A{\rm{|}}B} \right] = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}& \ldots &{{a_{1n}}}&{{b_1}}\\{{a_{21}}}&{{a_{22}}}& \ldots &{{a_{2n}}}&{{b_2}}\\ \ldots & \ldots & \ldots & \ldots & \ldots \\{{a_{m1}}}&{{a_{m2}}}& \ldots &{{a_{mn}}}&{{b_m}}\end{array}} \right]\)

    A is the coefficient matrix and [A|B] is called as augmented matrix of the given system of equations.

    We can find consistency of the given system of equations as follows:

    (i) If the rank of matrix A is equal to rank of augmented matrix and it is equal to number of unknowns, then system is consistent and there is a unique solution.

    Rank of A = Rank of augmented matrix = n

    (ii) If the rank of matrix A is equal to rank of augmented matrix and it is less than the number of unknowns, then system is consistent and there are infinite number of solutions.

    Rank of A = Rank of augmented matrix < n

    (iii) If the rank of matrix A is not equal to rank of augmented matrix, then system is inconsistent, and it has no solution.

    Rank of A ≠ Rank of augmented matrix

    Calculation:

    The given system of equations can be represented in a matrix form as shown below.

    \(A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&{ - 3}\\2&0&1\\0&{ - 2}&{ - 7}\end{array}} \right],\;X = \left[ {\begin{array}{*{20}{c}}x\\y\\z\end{array}} \right],\;B = \left[ {\begin{array}{*{20}{c}}3\\0\\\alpha \end{array}} \right]\)

    The Augmented matrix can be written by

    \(\left[ {A{\rm{|}}B} \right] = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&{ - 3}\\2&0&1\\0&{ - 2}&{ - 7}\end{array}{\rm{|}}\begin{array}{*{20}{c}}3\\0\\\alpha \end{array}} \right]\)

    R2 → R2 – 2R1

    \(= \left[ {\begin{array}{*{20}{c}}1&{ - 1}&{ - 3}\\0&2&7\\0&{ - 2}&{ - 7}\end{array}{\rm{|}}\begin{array}{*{20}{c}}3\\{ - 6}\\\alpha \end{array}} \right]\)

    R3 → R3 + R2

    \(= \left[ {\begin{array}{*{20}{c}}1&{ - 1}&{ - 3}\\0&2&7\\0&0&0\end{array}{\rm{|}}\begin{array}{*{20}{c}}3\\{ - 6}\\{\alpha - 6}\end{array}} \right]\)

    To have a solution, rank of A should be equal to rank of augmented matrix [A|B]

    ⇒ α – 6 = 0 ⇒ α = 6
  • Question 9
    1 / -0

    Consider the 3 × 3 matrix

    \(A=\left( \begin{matrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \\\end{matrix} \right)\)

    The number of distinct Eigen vectors of the matrix A are:
    Solution

    Concept:

    ∗ Distinct Eigen values gives district Eigen vectors

    ∗ Eigen values are roots of the Characteristic Equation which is given by

    det (A - λI) = 0

    Calculation:

    det \(\left( A-\lambda I \right)=\det \left( \begin{array}{*{35}{r}} -\lambda & -1 & -1 \\ 1 & 2-\lambda & 1 \\ 1 & 1 & 2-\lambda \\\end{array} \right)\)

    \(-\lambda \left[ {{\left( 2-\lambda \right)}^{2}}-1 \right]+1\left[ \left( 2-\lambda \right)-1 \right]-1\left( 1-\left( 2-\lambda \right) \right)\)

    ⇒ - λ3 + 4 λ2-5λ + 2

    Characteristic equation

    ⇒ - λ3 + 4 λ2 - 5λ + 2 = 0

    ⇒ λ3 - 4 λ+ 5λ - 2 = 0

    ⇒ (λ - 1)2 (λ - 2) = 0

    λ = 1, 1, 2

    There are two district Eigen values 1 and 2 and hence two distinct Eigen vectors.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now