Self Studies

Engineering Mat...

TIME LEFT -
  • Question 1
    1 / -0

    Consider a function f = yx, then the value of \(\left( {\frac{{{\partial ^2}f}}{{\partial x\partial y}}} \right)\) at point (2, 1) is -

  • Question 2
    1 / -0

    If R is the region 0 ≤ x ≤ y ≤ L, then

    \(\mathop \int\!\!\!\int \limits_R \left( {{x^2} + {y^2}} \right)dx\;dy\) is

  • Question 3
    1 / -0

    Which one of the following integrals is NOT an improper integral?

  • Question 4
    1 / -0

    The value of \(\mathop \smallint \limits_0^{\frac{\pi }{2}} \mathop \smallint \limits_0^{\frac{\pi }{2}} \mathop \smallint \limits_0^5 \sin \theta d\theta \;d\phi \;dr\) expressed in spherical co-ordinate will be ______ π.

  • Question 5
    1 / -0

    If Z = eax + by F(ax - by); the value of \(b\frac{{\partial Z}}{{\partial x}} + a\frac{{\partial Z}}{{\partial y}}\) is

  • Question 6
    1 / -0

    The time period of simple pendulum is \(T = 2\pi \sqrt {\frac{l}{g}}\). Find maximum error % in T due to possible error upto 1% in l and 2.5% in g.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 6

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now