Self Studies

Engineering Mat...

TIME LEFT -
  • Question 1
    1 / -0

    If C is the path along the curve y = x2 – 4x + 4 from (0, 4) to (2, 0), then \(\mathop \oint \nolimits_C \left( {y\hat i - 3x\hat j} \right) \cdot \overrightarrow {dr} \) is

  • Question 2
    1 / -0

    The value of the integral

    \(\mathop \oint \nolimits_s \vec r.\vec n\;ds\)

    over the closed surface S bounding a volume V, where \(\vec r = x i + y j + z k\) is the position vector and n̂ is normal to the surface S, is

  • Question 3
    1 / -0

    The value of \(\mathop \smallint \limits_C^\; \left( {2x + 3y} \right)dx - \left( {3x - 4y} \right)dy\) where c is the circle with radius as 1 and centre at origin.

  • Question 4
    1 / -0

     Evaluate \(\mathop \smallint \nolimits_C \vec F \cdot \overrightarrow {dr} \) where \(\vec F\left( {x,\;y,\;z} \right) = x\hat i + y\hat j + 3\left( {{x^2} + {y^2}} \right)\hat k\) and C is the boundary of the part of the paraboid where z2 = 64 – x2 – y2 which lies above the xy-plane and C is oriented counter clockwise when viewed from above.

  • Question 5
    1 / -0

    If S is the surface of the sphere x2 + y2 + z2 = a2, then the value of

    \(\mathop \int\!\!\!\int \limits_S \left( {x + z} \right)dydz + \left( {y + z} \right)dzdx + \left( {x + y} \right)dxdy\) is

  • Question 6
    1 / -0

    If S be any closed surface, evaluate \(\mathop \smallint \limits_S^\; Curl\;\vec F.\vec {ds}\)

  • Question 7
    1 / -0

    For vectors \(\vec F = 3xy\hat i - {y^2}\hat j\) and \(\vec R = x\hat i + y\hat j\), the value of \(\mathop \smallint \limits_C \vec F.d\vec R\) on the curve C (y = 2x2) in the x-y plane from (0, 0) to (1, 2) is

  • Question 8
    1 / -0

    The value of the line integral \(\frac{2}{\pi }\mathop \oint \limits_\gamma \left( { - {y^3}dx + {x^3}dy} \right)\), where γ is the circle x2 + y2 = 1 oriented counter clockwise, is ________.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 8

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now