Self Studies

Engineering Mathematics Test 6

Result Self Studies

Engineering Mathematics Test 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The order and degree of the differential equation \({\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^{\frac{1}{2}}} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^{\frac{1}{3}}}\) respectively are
    Solution

    The order of differential equation is the order of the highest derivative appearing in it.

    The degree of a differential equation is the degree of the highest derivative accruing in it, after the equation has been expressed in a form free from radicals as far as the derivatives are concerned.

    \({\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^{\frac{1}{2}}} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^{\frac{1}{3}}}\)

    Highest derivative in the given differential equation is 4

    Hence order is 4.

    To find the degrees, we need to change the differential equation in to form which is free from radicals.

    \({\left[ {{{\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)}^{\frac{1}{2}}}} \right]^6} = {\left[ {{{\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]}^{\frac{1}{3}}}} \right]^6}\)

    \(\Rightarrow {\left( {\frac{{{d^4}y}}{{d{x^4}}}} \right)^3} = {\left[ {1 + {{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)}^2}} \right]^2}\)

    Now the differential equation is free from radicals

    Degree of highest derivative = 3

    Order and degree of the given differential equation = 4 and 3

  • Question 2
    1 / -0
    The particular integral of \({x^2}\frac{{{d^2}y}}{{d{x^2}}} - x\frac{{dy}}{{dx}} + y = 4\log x\) is
    Solution

    \({x^2}\frac{{{d^2}y}}{{d{x^2}}} - x\frac{{dy}}{{dx}} + y = 4\log x\)

    \(D\left( {D - 1} \right)y - Dy + y = 4t\)

    \( \Rightarrow \left( {{D^2} - 2D + 1} \right)y = 4t\)

    \( \Rightarrow {\left( {D - 1} \right)^2}y = 4t\)

    Particular integral is,

    \(P.I. = \frac{1}{{{{\left( {D - 1} \right)}^2}}}4t = 4{\left( {D - 1} \right)^{ - 2}}t\)

    \( = 4\left( {1 + 2D + 3{D^2} + \ldots } \right)t\)

    = 4t + 8 = 4 log x + 8
  • Question 3
    1 / -0

    The partial differential equation \(\frac{{\partial u}}{{\partial t}} = \alpha \frac{{{\partial ^2}u}}{{\partial {x^2}}}\) where, α is a positive constant is

    Solution

    A linear second-order partial differential is written as:

    \(a\frac{{{\partial ^2}u}}{{\partial {x^2}}} + b\frac{{{\partial ^2}u}}{{\partial x\partial y}} + c\frac{{{\partial ^2}u}}{{\partial {y^2}}} + d\frac{{\partial u}}{{\partial X}} + e\frac{{\partial u}}{{\partial y}} + fu = 0\)

    \(a{u_{xx}} + b{u_{xy}} + c{u_{yy}} + d{u_x} + e{u_y} + fu = 0\)

    1) If, b2 – 4ac > 0: Hyperbolic PDE

    2) If, b2 – 4ac = 0: Parabolic PDE

    3) If, b2 – 4ac < 0: Elliptic PDE

    The wave equation: utt - uxx = 0 is hyperbolic

    The Laplace equation: uxx + uyy = 0 is elliptic

    The heat equation: ut - uxx = 0 is parabolic

    Calculation:

    \(\frac{{\partial u}}{{\partial t}} = \alpha \frac{{{\partial ^2}u}}{{\partial {x^2}}}\)

    Here, a = α, b = 0, c = 0 and α > 0

    So, b2 – 4ac = 0

    So, given PDE is parabolic.

  • Question 4
    1 / -0
    The solution of the equation \({\rm{x}}\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{y}} = 0{\rm{}}\) passing through the point (1,1) is
    Solution

    Given:

    x dy/dx + y = 0, (x,y) = (1,1)

    x dy/dx = -y

    On rearranging,

    dy/y = -dx/x

    \(\smallint \frac{1}{y}dy = \smallint - \frac{1}{x}dx\)

    On integrating,

    lny  = -lnx  +  c

    Since equation passing through the point (1,1), therefore when x=1, y=1

    0 = 0 + c

    ⇒ c = 0

    \({\rm{lny}} = - {\rm{lnx}} = \frac{1}{{{\rm{lnx}}}}\)  or y = 1/x

    ∴ The solution of the equation \({\bf{x}}\frac{{{\bf{dy}}}}{{{\bf{dx}}}} + {\bf{y}} = 0\) is x-1
  • Question 5
    1 / -0

    The solution of differential equation

    dx – (x + y + 1) dy = 0 is
    Solution

    Given differential equation is,

    dx – (x + y + 1) dy = 0

    \(\frac{{dy}}{{dx}} = \frac{1}{{\left( {x + y + 1} \right)}}\) 

    Put (x + y + 1) = t

    \( \Rightarrow 1 + \frac{{dy}}{{dx}} = \frac{{dt}}{{dx}}\) 

    \( \Rightarrow \frac{{dy}}{{dx}} = \frac{{dt}}{{dx}} - 1\) 

    Now, the differential equation becomes

    \(\frac{{dt}}{{dx}} - 1 = \frac{1}{t}\) 

    \(\frac{{dt}}{{dx}} = \frac{1}{t} + 1\) 

    \(\frac{{dt}}{{dx}} = \frac{{t + 1}}{t}\) 

    \( \Rightarrow dt\left( {\frac{t}{{t + 1}}} \right) = dx\) 

    \( \Rightarrow \left( {1 - \frac{1}{{t + 1}}} \right)dt = dx\) 

    \( \Rightarrow \smallint \left( {1 - \frac{1}{{t + 1}}} \right)dt = dx\) 

    t = In (t + 1) = x + C1

    (x + y + 1) – In (x + y + 2) = x + C1

    y + 1 – C1 = In (x + y + 2)

    In (x + y + 2) = y + k

    (x + y + 2) = ey - ek

    ⇒ (x + y + 2) e-y = C
  • Question 6
    1 / -0
    If an integral curve of the differential equation \(\left( {y - x} \right)\frac{{dy}}{{dx}} = 1\) pass through (0, 0) and (α, 1), then α is equal to
    Solution

    \(\left( {y - x} \right)\frac{{dy}}{{dx}} = 1\)

    \(\Rightarrow \frac{{dx}}{{dy}} + x = y\)

    Now it is in the form of first order linear equation.

    Integrating factor \(= {e^{\smallint 1dy}} = {e^y}\)

    Now, the solution is: \(y{e^y} = \smallint y{e^y}dy + C\)

    \(\Rightarrow x{e^y} = \left( {y{e^y} - {e^y}} \right) + C\)

    \(\Rightarrow \left( {x + 1} \right){e^y} = y{e^y} + C\)

    The above curve passes through (0, 0)

    ⇒ C = 1

    Now, the equation becomes \(\left( {x + 1} \right){e^y} = y{e^y} + 1\)

    (α, 1) is also passes through the above equation

    \(\Rightarrow \left( {\alpha + 1} \right)e = e + 1\)

    \(\Rightarrow \alpha e + e = e + 1 \Rightarrow \alpha = {e^{ - 1}}\)
  • Question 7
    1 / -0
    Solve \(\frac{{{d^2}y}}{{d{y^2}}} - 3\frac{{dy}}{{dx}} + 2y = x{e^{3x}}\)
    Solution

    (D2 – 3D + 2)y = x e3x

     A.E. is (D2 + 3D + 2) = 0

    ⇒ (D - 1) (D - 2) = 0

    ⇒ D = 1, 2

    C.F. = C1ex + C2e2x

    \(\begin{array}{l} P.I. = \frac{1}{{\left( {{D^2} - 3D + 2} \right)}}\left( {x\;{e^{3x}}} \right)\\ = {e^{3x}}\frac{1}{{{{\left( {D + 3} \right)}^2} - 3\left( {D + 3} \right) + 2}}x\;\\ = {e^{3x}}\frac{1}{{{D^2} + 3D + 2}}\left( x \right) \end{array}\)

    \(\begin{array}{l} = \frac{{{e^{3x}}}}{2}{\left[ {1 + \left( {\frac{{3D + {D^2}}}{2}} \right)} \right]^{ - 1}}x\\ = \frac{{{e^{3x}}}}{2}\left( {1 - \frac{{3D}}{2} \ldots } \right)x\\ = \frac{{{e^{3x}}}}{2}\left( {x - \frac{3}{2}} \right) \end{array}\)

    Complete solution is, \(y = {C_1}{e^x} + {C_2}{e^{2x}} + \frac{{{e^{3x}}}}{2}\left( {x - \frac{3}{2}} \right)\)
  • Question 8
    1 / -0
    If xr is on integrating factor of (x + y3) dx + 6xy2 dy = 0, then r is ______
    Solution

    Concept:

    In the equation M dx + N dy = 0

    If \(\frac{{\left( {\frac{{\partial M}}{{\partial y}} - \frac{{\partial N}}{{\partial x}}} \right)}}{N}\) be a function of x only = f(x), then \({e^{\smallint f\left( x \right)dx}}\) is an integrating factor.

    Calculation:

    Given differential equation is

    (x + y3)dx + 6xy2 dy = 0

    M = x + y3, N = 6xy2

    \(\frac{{\partial M}}{{\partial y}} = 3{y^2}\) 

    \(\frac{{\partial N}}{{\partial x}} = 6{y^2}\) 

    \(\frac{{\frac{{\partial M}}{{\partial y}} - \frac{{\partial N}}{{\partial x}}}}{N} = \frac{{3{y^2} - 6{y^2}}}{{6x{y^2}}} = \frac{{ - 1}}{2}\left( {\frac{1}{x}} \right) = f\left( x \right)\) 

    Integrating factor \({e^{\smallint \frac{{ - 1}}{2}\left( {\frac{1}{x}} \right)dx}} = \frac{1}{{\sqrt x }} = {x^{ - 0.5}}\) 

    Given that xr is an integrating factor.

    ⇒ r = -0.5
  • Question 9
    1 / -0

    Given the ordinary differential equation \(\frac{{{d^2}y}}{{d{x^2}}} + \frac{{dy}}{{dx}} - 6y = 0\) With y (0) = 0 and \(\frac{{dy}}{{dx}}\left( 0 \right) = 1\), the value of y(1) is ______ (correct to two decimal places).

    Solution

    \(\frac{{{d^2}y}}{{d{x^2}}} + \frac{{dy}}{{dx}} - 6y = 0\)

    With, \(y\left( 0 \right) = 0,\;and\frac{{dy}}{{dx}}\left( 0 \right) = 1\)

    Y (1) = -?

    ∵ D2y + Dy - 6y = 0

    Characteristic equation will be -

    m2 + m - 6 = 0

    m2 + 3m - 2m - 6 = 0

    m = -3, 2

    Since roots are real & different thus:

    \(y\left( x \right) = {C_1}{e^{ - 3x}} + {C_2}{e^{2x}}\)

    Given y (0) = 0

    0 = C1 + C2      ----(1)

    \(\frac{{dy}}{{dx}} = - 3{C_1}{e^{ - 3x}} + 2{C_2}{e^{2x}}\)

    \(\frac{{dy}}{{dx}}\left( 0 \right) = - 3{C_1} + 2{C_2}\)

    1 = -3C1 + 2C2      ----(2)

    By equation (1) & (2)

    5C1 = -1

    \({C_1} = - \frac{1}{5}\)

    \({C_2} = - \frac{1}{5}\) 

    Thus, \(y\left( x \right) = - \frac{1}{5}{e^{ - 3x}} + \frac{1}{5}{e^{2x}}\)

    \(y\left( 1 \right) = - \frac{1}{5}{e^{ - 3 \times 1}} + \frac{1}{5}{e^{2 \times 1}}\) 

    = 1.467

    Y (1) = 1.47
  • Question 10
    1 / -0
    The differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constants is:
    Solution

    \(y = a\sin \left( {x + b} \right)\)     ----(1)

    There are two constants (a, b) so order of differential equations will be of order two.

    \(\frac{{dy}}{{dx}} = a\cos \left( {x + b} \right)\)       ----(2)

    \(\frac{{{d^2}y}}{{d{x^2}}} = - a\sin \left( {x + b} \right) = - y\)       ----(3)

    \(\frac{{{d^2}y}}{{d{x^2}}} + y = 0\) which is free from the arbitrary constants a and b and hence this the required differential equation.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now