Linear differential equations with variable coefficients can be reduced to linear differential equations with constant coefficients by suitable substitutions.
Euler Cauchy Homogeneous linear equation:
\({x^n}\frac{{{d^n}y}}{{d{x^n}}} + {c_1}{x^{n - 1}}\frac{{{d^{n - 1}}y}}{{d{x^{n - 1}}}} + ... + {c_{n - 1}}x\frac{{dy}}{{dx}} + {c_n}y = f(x)\)
Take x = et ⇒ t = log x
\(\begin{array}{l} \frac{{dy}}{{dx}} = \frac{{dy}}{{dt}}.\frac{{dt}}{{dx}} = \frac{{dy}}{{dt}}.\frac{1}{x} \Rightarrow x\frac{{dy}}{{dx}} = \frac{{dy}}{{dt}} = Dy\\ {x^2}\frac{{{d^2}y}}{{d{x^2}}} = D(D - 1)y;\,{x^3}\frac{{{d^3}y}}{{d{x^3}}} = D(D - 1)(D - 2)y \end{array}\)
Given that, x, x ln x. and ln2x as linearly independent solutions.
y = C1x + C2x ln x + C3x ln2 x
put, t = ln x
⇒ x = et
⇒ y = C1 et + C2 t et + C3 t2 et
⇒ y = (C1 + C2t + C3t2) et
From the above equation, roots of auxiliary equation are, D = 1, 1, 1
Now, the auxiliary equation is,
(D - 1) (D - 1) (D - 1) = 0
⇒ (D2 + 1 - 2D) (D - 1) = 0
⇒ D3 - 3D2 + 3D - 1 = 0 ----(1)
The standard Cauchy’s differential equation is in the form of
K1 D(D - 1) (D - 2) + K2 D(D - 1) + K3 D + K4 = 0
⇒ K1 [D3 - 3D2 + 2D] + K2 [D2 - D] + K3D + K4 = 0 ----(2)
By comparing the above two equations,
K1 = 1, K4 = -1
-2K1 + K2 = -3 ⇒ K2 = 0
⇒ K3 = 1
Now the equation (2) becomes,
D(D - 1) (D - 2) + D - 1 = 0
⇒ D(D - 1) (D - 2) y + Dy - y = 0
\( \Rightarrow {x^3}\frac{{{d^3}y}}{{d{x^3}}} + x\frac{{dy}}{{dx}} - y = 0\)
⇒ x3y''' + xy' - y = 0