Self Studies

Engineering Mathematics Test 7

Result Self Studies

Engineering Mathematics Test 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If \(\frac{{{d^2}y}}{{d{t^2}}} + y = 0\) under the conditions y = 1, \(\frac{{dy}}{{dt}} = 0\), when t = 0, then y(π/2) is equal to
    Solution

    (D2 + 1) y = 0

    A.E. is (D2 + 1) = 0

    ⇒ D = ± i

    Solution is, y = (C1 cos t + C2 sin t)

    Given that, y(0) = 1

    ⇒ 1 = (C1 + 0) ⇒ C1 = 1

    y’ = -C1 sin t + C2 cos t

    y’(0) = 0

    ⇒ 0 = 0 + C2 ⇒ C2 = 0

    ⇒ y = cos t

    \(\Rightarrow y\left( {\frac{\pi }{2}} \right) = \cos \left( {\frac{\pi }{2}} \right) = 0\)

  • Question 2
    1 / -0
    Which of the following equations represents a one-dimensional wave equation?
    Solution

    One dimensional wave equation: \(\frac{{{\partial ^2}u}}{{\partial {t^2}}} = {C^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}}\)

    Two-dimensional wave equation: \(\frac{{{\partial ^2}u}}{{\partial {t^2}}} = \frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}}\)

    Important:

    Heat equation: \(\frac{{\partial u}}{{\partial t}} = {C^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}}\)

    Laplace equation: \(\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}} + \frac{{{\partial ^2}u}}{{\partial {z^2}}} = 0\)
  • Question 3
    1 / -0
    Find the values of y(1) by solving the differential equation \(y\frac{{dy}}{{dx}} = 6{x^2} + 5,\;y\left( 0 \right) = 2\)
    Solution

    \(y\frac{{dy}}{{dx}} = 6{x^2} + 5\)

    y dy = (6x2 + 5) dx

    By integrating both the sides, we get

    \( \Rightarrow \frac{{{y^2}}}{2} = 2{x^3} + 5x + C\) 

    y2 = 4x3 + 10x + C

    y(0) = 2

    C = 4

    Now, y2 = 4x3 + 10x + 4

    At x = 1, y2 = 4 + 10 + 4 = 18

    \( \Rightarrow y\left( 1 \right) = \sqrt {18} = \pm 3\sqrt 2 \)

  • Question 4
    1 / -0

    The solution of the partial differential equation \(\frac{{{\partial ^2}z}}{{\partial {y^2}}} + z = 0\) is when \(y = 0,z = {e^x}\;and\frac{{\partial z}}{{\partial y}} = {e^{ - x}}\)

    Solution

    Explanation:

    \(\frac{{{\partial ^2}}}{{\partial {y^2}}} + z = 0\)

    If z were function of y alone, the solution would have been z = A sin y + B cos y, where A and B are constants.

    Since z is a function of x and y, A and B can be arbitrary functions of x.

    Hence the solution of the given equations is,

    z = f(x) sin y + ϕ(x) cos y

    \(\frac{{\partial z}}{{\partial y}} = f\left( x \right)\cos y - \phi \left( x \right)\sin y\)

    At, y = 0, z = ex

    ⇒ ex = ϕ(x)

    At, \(y = 0,\frac{{\partial z}}{{\partial y}} = {e^{ - x}}\)

    ⇒ e-x = f(x)

    The solution is,

    z = e-x sin y + ex cos y
  • Question 5
    1 / -0

    A third order ordinary differential equation with x, x ln x and x ln2x as linearly independent solutions is given by

    Solution

    Linear differential equations with variable coefficients can be reduced to linear differential equations with constant coefficients by suitable substitutions.

    Euler Cauchy Homogeneous linear equation:

    \({x^n}\frac{{{d^n}y}}{{d{x^n}}} + {c_1}{x^{n - 1}}\frac{{{d^{n - 1}}y}}{{d{x^{n - 1}}}} + ... + {c_{n - 1}}x\frac{{dy}}{{dx}} + {c_n}y = f(x)\)

    Take x = e⇒ t = log x

    \(\begin{array}{l} \frac{{dy}}{{dx}} = \frac{{dy}}{{dt}}.\frac{{dt}}{{dx}} = \frac{{dy}}{{dt}}.\frac{1}{x} \Rightarrow x\frac{{dy}}{{dx}} = \frac{{dy}}{{dt}} = Dy\\ {x^2}\frac{{{d^2}y}}{{d{x^2}}} = D(D - 1)y;\,{x^3}\frac{{{d^3}y}}{{d{x^3}}} = D(D - 1)(D - 2)y \end{array}\)

    Given that, x, x ln x. and ln2x as linearly independent solutions.

    y = C1x + C2x ln x + C3x ln2 x

    put, t = ln x

    ⇒ x = et

    ⇒ y = C1 et + C2 t et + C3 t2 et

    ⇒ y = (C1 + C2t + C3t2) et

    From the above equation, roots of auxiliary equation are, D = 1, 1, 1

    Now, the auxiliary equation is,

    (D - 1) (D - 1) (D - 1) = 0

    ⇒ (D2 + 1 - 2D) (D - 1) = 0

    ⇒ D3 - 3D2 + 3D - 1 = 0      ----(1)

    The standard Cauchy’s differential equation is in the form of

    K1 D(D - 1) (D - 2) + K2 D(D - 1) + K3 D + K4 = 0

    ⇒ K1 [D3 - 3D2 + 2D] + K2 [D2 - D] + K3D + K4 = 0      ----(2)

    By comparing the above two equations,

    K1 = 1, K4 = -1

    -2K1 + K2 = -3 ⇒ K2 = 0

    ⇒ K3 = 1

    Now the equation (2) becomes,

    D(D - 1) (D - 2) + D - 1 = 0

    ⇒ D(D - 1) (D - 2) y + Dy - y = 0

    \( \Rightarrow {x^3}\frac{{{d^3}y}}{{d{x^3}}} + x\frac{{dy}}{{dx}} - y = 0\)

    ⇒ x3y''' + xy' - y = 0

  • Question 6
    1 / -0

    Consider the equation \(\frac{{dy}}{{dx}} = \frac{{{y^2}}}{x}\) with the boundary y(1) = 1. Which one of the following is the correct range of x for which y is real and finite?

    Solution

    \(\frac{{dy}}{{dx}} = \frac{{{y^2}}}{x}\)

    \( \Rightarrow \frac{{dy}}{{{y^2}}} = \frac{{dx}}{x}\)

    \( = \smallint \frac{{dy}}{{{y^2}}} = \smallint \frac{{dx}}{x}\;\)

    \( \Rightarrow - \frac{1}{{{y}}} = \ln \left( x \right) + c\)

    put y(1) = 1

    \( \Rightarrow - \frac{1}{{{{\left( 1 \right)}}}} = \ln \left( 1 \right) + c\)

    ⇒ c = - 1

    \(\therefore - \frac{1}{y} = \ln \left( x \right) - 1\)

    \( \Rightarrow y = \frac{1}{{1 - \ln \left( x \right)}}\)

    For y to be finite

    \(1-\;ln \left( x \right) \ne 0\;and\;x > 0\)

    ⇒ ln (x) ≠ 1

    ⇒ x ≠ e1

    ⇒ x ≠ e

    ⇒ x ≠ 2.718

    So the correct range of x is 0 < x < 2.71 and 2.718 < x ≤ ∞

    From the given options, 3 ≤ x ≤ ∞ satisfies the above conditions.

  • Question 7
    1 / -0
    Particular integral of \(\left( {{x^2}{D^2} - 2} \right)y = {x^2} + \frac{1}{x}\)
    Solution

    Concept:

    Euler Cauchy Homogeneous linear equation:

    \({x^n}\frac{{{d^n}y}}{{d{x^n}}} + {c_1}{x^{n - 1}}\frac{{{d^{n - 1}}y}}{{d{x^{n - 1}}}} + ... + {c_{n - 1}}x\frac{{dy}}{{dx}} + {c_n}y = f(x)\)

    Take x = et ⇒ t = log x

    \(\begin{array}{l} \frac{{dy}}{{dx}} = \frac{{dy}}{{dt}}.\frac{{dt}}{{dx}} = \frac{{dy}}{{dt}}.\frac{1}{x} \Rightarrow x\frac{{dy}}{{dx}} = \frac{{dy}}{{dt}} = Dy\\ {x^2}\frac{{{d^2}y}}{{d{x^2}}} = D(D - 1)y;\,{x^3}\frac{{{d^3}y}}{{d{x^3}}} = D(D - 1)(D - 2)y \end{array}\)

    Calculation:

    \(\left( {{x^2}{D^2} - 2} \right)y = {x^2} + \frac{1}{x}\)

    \( \Rightarrow \left( {D\left( {D - 1} \right) - 2} \right)y = {e^{2t}} + \frac{1}{{{e^t}}}\)

    (D2 – D - 2)y = e2t + e-t

    \(PI = \frac{1}{{\left( {{D^2}D - 2} \right)}}\left( {{e^{2t}} + {e^{ - t}}} \right)\) 

    \( = \frac{1}{{\left( {{D^2} - D - 2\;} \right)}}{e^{2t}} + \frac{1}{{\left( {{D^2} - D - 2} \right)}}{e^{ - t}}\) 

    \( = \frac{t}{{2D - 1}}{e^{2t}} + \frac{t}{{2D - 1}}{e^{ - t}}\) 

    \( = \frac{t}{3}{e^{2t}} + \frac{t}{{ - 3}}{e^{ - t}}\)  

    \( = \frac{t}{3}\left( {{e^{2t}} - {e^{ - t}}} \right) = \frac{{ln\;x}}{3}\left( {{x^2} - \frac{1}{x}} \right)\) 

  • Question 8
    1 / -0
    The complementary solution of the differential equation \({x^2}\frac{{{d^3}y}}{{d{x^3}}} - 4x\frac{{{d^2}y}}{{d{x^2}}} + 6\frac{{dy}}{{dx}} = 4\) is
    Solution

    Concept:

    Euler Cauchy Homogeneous linear equation:

    \({x^n}\frac{{{d^n}y}}{{d{x^n}}} + {c_1}{x^{n - 1}}\frac{{{d^{n - 1}}y}}{{d{x^{n - 1}}}} + ... + {c_{n - 1}}x\frac{{dy}}{{dx}} + {c_n}y = f(x)\)

    Take x = et ⇒ t = log x

    \(\begin{array}{l} \frac{{dy}}{{dx}} = \frac{{dy}}{{dt}}.\frac{{dt}}{{dx}} = \frac{{dy}}{{dt}}.\frac{1}{x} \Rightarrow x\frac{{dy}}{{dx}} = \frac{{dy}}{{dt}} = Dy\\ {x^2}\frac{{{d^2}y}}{{d{x^2}}} = D(D - 1)y;\,{x^3}\frac{{{d^3}y}}{{d{x^3}}} = D(D - 1)(D - 2)y \end{array}\)

    Calculation:

    \({x^2}\frac{{{d^3}y}}{{d{x^3}}} - 4x\frac{{{d^2}y}}{{d{x^2}}} + 6\frac{{dy}}{{dx}} = 4\)

    By multiplying with ‘x’ on both sides

    \(\Rightarrow {x^3}\frac{{{d^3}y}}{{d{x^3}}} - 4{x^2}\frac{{{d^2}y}}{{d{x^2}}} + 6x\frac{{dy}}{{dx}} = 4x\)

    The given equations become,

    ⇒ [D (D – 1) (D – 2) – 4 D (D – 1) + 6D] y = 4x

    ⇒ (D3 – 3D2 + 2D – 4D2 + 4D + 6D) y = 4x

    ⇒ (D3 – 7D2 + 12D) y = 4x

    Auxiliary equation: D3 – 7D2 + 12D = 0

    ⇒ D (D2 – 7D + 12) = 0

    ⇒ D = 0, 3, 4

    Complementary solution (CF) = C1 + C2 e3t + C3 e4t

    CF = C1 + C2 x3 + C3x4  

  • Question 9
    1 / -0
    General solution of the Cauchy-Euler equation \({x^2}\frac{{{d^2}y}}{{d{x^2}}} - 7x\frac{{dy}}{{dx}} + 16y = 0\) is
    Solution

    Concept:

    For different roots of the auxiliary equation, the solution (complementary function) of the differential equation is as shown below.

    Roots of Auxiliary Equation

    Complementary Function

    m1, m2, m3, … (real and different roots)

    \({C_1}{e^{{m_1}x}} + {C_2}{e^{{m_2}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m3, … (two real and equal roots)

    \(\left( {{C_1} + {C_2}x} \right){e^{{m_1}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m1, m4… (three real and equal roots)

    \(\left( {{C_1} + {C_2}x + {C_3}{x^2}} \right){e^{{m_1}x}} + {C_4}{e^{{m_4}x}} + \ldots\)

    α + i β, α – i β, m3, … (a pair of imaginary roots)

    \({e^{\alpha x}}\left( {{C_1}\cos \beta x + {C_2}\sin \beta x} \right) + {C_3}{e^{{m_3}x}} + \ldots\)

    α ± i β, α ± i β, m5, … (two pairs of equal imaginary roots)

    \({e^{\alpha x}}\left( {\left( {{C_1} + {C_2}x} \right)\cos \beta x + \left( {{C_3} + {C_4}x} \right)\sin \beta x} \right) + {C_5}{e^{{m_5}x}} + \ldots\)

     

    Calculation:

    \({x^2}\frac{{{d^2}y}}{{d{x^2}}} - 7x\frac{{dy}}{{dx}} + 16y = 0\)

    Put x = et

    ⇒ t = ln x

    \(\begin{array}{l} \frac{{dy}}{{dx}} = \frac{{dy}}{{dt}}.\frac{{dt}}{{dx}} = \frac{{dy}}{{dt}}.\frac{1}{x} \Rightarrow x\frac{{dy}}{{dx}} = \frac{{dy}}{{dt}} = Dy\\ {x^2}\frac{{{d^2}y}}{{d{x^2}}} = D(D - 1)y;\,{x^3}\frac{{{d^3}y}}{{d{x^3}}} = D(D - 1)(D - 2)y \end{array}\)

    Now, the above differential equation becomes

    D (D – 1) y – 7 D y + 16 y = 0

    ⇒ D2 y – D y – 7 D y + 16 y = 0

    ⇒ (D2 – 8 D + 16) y = 0

    Auxiliary equation:

    (D2 – 8 D + 16) = 0

    ⇒ D = 4

    The solutions for the above roots of auxiliary equations are:

    y(t) = (c1 + c2 t) e4t

    ⇒ y(x) = (c1 + c2 ln x) x4
  • Question 10
    1 / -0

    The solution of a partial differential equation is in the form of z = f1 (y - ax) + x f2 (y - bx).

    \(4\frac{{{\partial ^2}z}}{{\partial {x^2}}} + 12\frac{{{\partial ^2}z}}{{\partial x\;\partial y}} + 9\frac{{{\partial ^2}z}}{{\partial {y^2}}} = 0\) 

    Then the values of a and b are
    Solution

    The given partial differential equation can be written as

    (4D2 + 12DD’ + 9D’2) z = 0

    Its auxiliary equation is,

    4m2 + 12m + 9 = 0

    \( \Rightarrow m = \frac{{ - 3}}{2},\frac{{ - 3}}{2}\) 

    The complete solution is,

    z = f1 (y – 1.5 x) + x f2 (y – 1.5 x)

    Therefore, \(a = \frac{3}{2},\;b = \frac{3}{2}\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now