Concept:
Cauchy’s Theorem:
If f(z) is an analytic function and f’(z) is continuous at each point within and on a closed curve C, then
\(\mathop \oint \limits_C f\left( z \right)dz = 0\)
Cauchy’s Integral Formula:
If f(z) is an analytic function within a closed curve and if a is any point within C, then
\(f\left( a \right) = \frac{1}{{2\pi i}}\mathop \oint \limits_C \frac{{f\left( z \right)}}{{z - a}}dz\)
\({f^n}\left( a \right) = \frac{{n!}}{{2\pi i}}\mathop \oint \limits_C \frac{{f\left( z \right)}}{{{{\left( {z - a} \right)}^{n + 1}}}}dz\)
Residue Theorem:
If f(z) is analytic in a closed curve C except at a finite number of singular points within C, then
\(\mathop \smallint \limits_C f\left( z \right)dz = 2\pi i \times \left[ {{\rm{sum\;of\;residues\;at\;the\;singualr\;points\;within\;C}}} \right]\)
Formula to find residue:
1. If f(z) has a simple pole at z = a, then
\(Res\;f\left( a \right) = \mathop {\lim }\limits_{z \to a} \left[ {\left( {z - a} \right)f\left( z \right)} \right]\)
2. If f(z) has a pole of order n at z = a, then
\(Res\;f\left( a \right) = \frac{1}{{\left( {n - 1} \right)!}}{\left\{ {\frac{{{d^{n - 1}}}}{{d{z^{n - 1}}}}\left[ {{{\left( {z - a} \right)}^n}f\left( z \right)} \right]} \right\}_{z = a}}\)
Application:
\(f\left( z \right) = \frac{{z - 8}}{{z\left( {z - 4} \right)}}\)
Poles: z = 0, 4
Zeros: z = 8
Residue at f(z) at z = 0 is,
\(= \mathop {{\rm{lt}}}\limits_{z \to 0} zf\left( z \right)\)
\(= \mathop {{\rm{lt}}}\limits_{z \to 0} \frac{{z - 8}}{{z - 4}} = 2\)
Residue at f(z) at z = 4 is,
\(= \mathop {{\rm{lt}}}\limits_{z \to 4} \left( {z - 4} \right)f\left( z \right)\)
\(= \mathop {{\rm{lt}}}\limits_{z \to 4} \frac{{z - 8}}{z} = - 1\)
Value of the integral = 2πi [sum of residues]
= 2πi [2 - 1] = 2πi