\({\rm{m}} = \sqrt {\frac{{{\rm{hp}}}}{{{\rm{k}}{{\rm{A}}_{\rm{c}}}}}} \)
Concept:
Heat dissipation from an infinitely long fin:
\({{\rm{Q}}_{{\rm{long\;fin}}}} = - {\rm{k}}{{\rm{A}}_{\rm{c}}}{\left. {\frac{{{\rm{dT}}}}{{{\rm{dx}}}}} \right|_{{\rm{x}} = 0}} = \sqrt {{\rm{hpk}}{{\rm{A}}_{\rm{c}}}} {\rm{\;}}\left( {{{\rm{T}}_{\rm{b}}} - {{\rm{T}}_\infty }} \right)\)
\(\frac{{{\rm{T}} - {{\rm{T}}_\infty }}}{{{{\rm{T}}_{\rm{o}}} - {{\rm{T}}_\infty }}} = {{\rm{e}}^{ - {\rm{mx}}}}\)
Heat dissipation form a fin insulated at the flip negligible heat loss fin tip.
\(\frac{{\rm{\theta }}}{{{{\rm{\theta }}_{\rm{o}}}}} = \frac{{{\rm{T}} - {{\rm{T}}_\infty }}}{{{{\rm{T}}_{\rm{o}}} - {{\rm{T}}_\infty }}} = \frac{{\cos {\rm{h}}\left( {{\rm{m}}\left( {{\rm{l}} - {\rm{x}}} \right)} \right)}}{{\cos {\rm{h}}\left( {{\rm{ml}}} \right)}}\)
\({{\rm{Q}}_{{\rm{insulated\;fin}}}} = - {\rm{k}}{{\rm{A}}_{\rm{c}}}{\left. {\frac{{{\rm{dT}}}}{{{\rm{dx}}}}} \right|_{{\rm{x}} = 0}} = \sqrt {{\rm{hPk}}{{\rm{A}}_{\rm{c}}}} \left( {{{\rm{T}}_{\rm{o}}} - {{\rm{T}}_\infty }} \right)\tan {\rm{h}}\left( {{\rm{mL}}} \right)\)
Calculation:
A long rod applies that it is an infinity long fin
Given: D = 20 mm = 0.02 m, Tb = 110°C, T = 20°C
h = 5 W/m2K , k = 15 W/mK
P = πd = π (0.02) = 0.063 m
\(A = \frac{\pi }{4}{d^2} = \frac{\pi }{4}{\left( {0.02} \right)^2} = 3.14 \times {10^{ - 4}}{m^2}\)
\(Q = \sqrt {hPkA} \left( {{T_b} - {T_\infty }} \right)\)
\(Q = \sqrt {5 \times 0.063 \times 3.14 \times {{10}^{ - 4}} \times 15} \;\left( {110 - 20} \right)\)
Q = 0.03852 × 90 = 3.47 W