Given:
D = 1600, C0 = 5, Ch = 10% of C
Since, the lowest unit price is 0.98, so computing economic order quantity for Q2
\(Q_2^* = \sqrt {\frac{{2D{C_0}}}{{{C_h}}}} = \sqrt {\frac{{2\; \times \;1600\; \times \;5}}{{0.1\; \times \;0.98}}} \)
\(\therefore Q_2^* = 404.06\;{\rm{units}}\)
This is not feasible as Q2 > 800 units.
Now,
Calculating for Q1, C = Rs. 1
\(Q_1^* = \sqrt {\frac{{2D{C_0}}}{{{C_n}}}} = \sqrt {\frac{{2\; \times \;1600\; \times \;5}}{{0.1\; \times \;1}}} \)
\(\therefore Q_1^* = 400\;{\rm{units}}\)
This is feasible, now we will calculate and compare optimum cost at higher price break point.
\({\rm{Total\;cost\;}}\left( {T.C.} \right)\; = D.C + \frac{D}{Q}{C_0} + \frac{Q}{2}{C_n}\)
\(T.C.\;\left( {at\;Q_1^* = 400} \right) = \left( {1600 \times 1} \right) + \left( {\frac{{1600}}{{400}} \times 5} \right) + \left( {\frac{{400}}{2} \times 0.1 \times 1} \right)\)
\(T.C.\;\left( {at\;Q_1^* = 400} \right) = {\rm{\;Rs}}.{\rm{\;}}1640\)
Now,
at Q = 800, (C = 0.98)
\(T.C.\;\left( {at\;Q = 800} \right) = \left( {1600 \times 0.98} \right) + \left( {\frac{{1600}}{{800}} \times 5} \right) + \left( {\frac{{800}}{2} \times 0.98 \times 0.1} \right)\)
∴ T.C. (at Q=800) = Rs. 1617.2
Since,
Total cost at Q = 800 is less than total cost at Q*= 400
∴ Optimal order quantity = 800.