Self Studies

Engineering Mathematics Test 7

Result Self Studies

Engineering Mathematics Test 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the integrating factor of the following differential equation.

    dydx+2cosecxy=tan3(x2)
    Solution

    Concept:

    Integrating factor of dydx+Py=Q(x) is given by,

    IF = e∫ Pdx

    Calculation:

    P = 2 / sin x

    IF = e∫ 2 / sin x dx = e∫ 2 cosec xdx

    IF = e2 log (tan (x / 2))

    IF = tan2 (x / 2)

  • Question 2
    1 / -0
    Solve: x2 y’’ + 5y - 3xy’ = 0
    Solution

    Concept:

    The differential equation of the form xndnydxn+xn1dn1ydxn1++y=0 is called the Euler-Cauchy differential equation.

    To solve this, we substitute

    x = ez

    and replace the derivatives by dy / dz and we write

    dnydxn=D(D1)(D(n1))D=ddz

    Write auxillary equation and equate = 0

    Calculation:

    x2y’’ + 5y - 3xy’ = 0

    ⇒ D (D - 1) - 3D + 5 = 0

    D2 - 4D + 5 = 0

    D=4±16202D=2±i

    ∴ Solution is: y = e2z [c1 cos z + c2 sin z]

    Z = ln (x)

    y = x2 [c1 cos (ln x) + c2 sin (ln x)]

  • Question 3
    1 / -0
    The particular integral of the differential equation (2D3 – 7D2 + 7D – 2) y = e-8x is
    Solution

    Explanation:

    Given:

    Differential equation: (2D3 – 7D2 + 7D – 2) y = e-8x

    Particular integral, PI=1f(D)ϕ(x)

    =12D37D2+7D2e8x

    =12(8)37(8)2+7(8)2e8x

    =11530e8x
  • Question 4
    1 / -0
    Consider the differential equation dydx+y=ex with y(0)=1. Then the value of y(1) is
    Solution

    Explanation:

    dydx+y=ex,y(0)=1

    Integrating factor, IF=edx=ex

    y(IF)=(IF)exdx+Cy.ex=e2x2+C

    At x=0, y=1

    C=12

    y(1)=e2+e12=12[e+e1]

  • Question 5
    1 / -0
    Let y(x) be the solution of the differential equation ddx(xdydx)=x;y(1)=0,dydx|x=1=0 then y(2) is
    Solution

    Explanation:

    ddx(xdydx)=x

    xdydx=x22+c1

    dydx|x=1=0

    0=12+c1c1=12

    dydx=x212x

    y=x2412lnx+c2

    y(1) = 0

    0=140+c2

    c2=14

    y=x2412lnx14

    y(2)=3412ln2
  • Question 6
    1 / -0

    For the differential equation dxdt=4x, the initial conditions are at

    t = 0, x = 6

    What is the value of x at t = s?
    Solution

    Concept:

    Variable separable differential equation.

    f(x) dx + f(y) dy = 0

    ⇒ ∫ f(x) dx + ∫ f(y) dy = c

    Calculation:

    Given:

    dx / dt = 4x

    1xdx4dt=0

    1xdx4dt=0

    1xdx4dt=c

    ln (x) - 4t = c

    At t = 0, x = 6

    ∴ ln (6) = c

    Hence, the f(x) is, ln x = 4t + ln 6

    ⇒ ln (x / 6) = 4t

    x = 6e4t

    At, t = 5

    ∴ x = 6e20
  • Question 7
    1 / -0
    Solution of the differential equation is dydx=sin(x+y)+cos(x+y)
    Solution

    Explanation:

    x+y=tdydx=dtdx1

    dydx=sin(x+y)+cos(x+y)

    dtdx1=sint+costdtdx=1+cost+sint

    dtdx=2cos2t2+2sint2cost2

    dtdx=2cos2(t2)(1+tant2)=2(1+tant2)sec2t2

    dx=sec2t22(1+tan(t2))dt

    x=ln(1+tant2)+c

    x=ln(1+tan12(x+y))+c

  • Question 8
    1 / -0

    Solve the given differential equation with initial condition y(0) = 0 and y’(0) = 1100 find the value of y(1).

    4y’’(x) + 64y(x) = 0 (round off to two decimal places)
    Solution

    Concept:

    Write the auxillary equation by replacing derivatives and dy / dx = m, d2ydx2=m2,dnydxn=mn making RHS = 0

    → Solve auxillary equation for ‘m’.

    → for complex values of m = α ± iB.

    Complementary function = eαx [c1 cos B x + c2 sin B x]

    Calculation:

    4y’’(x) + 64y(x) = 0

    ⇒ 4m2 + 64 = 0

    ⇒ m2 = -16 ⇒ m = ± 4i

    ∴ y = c1 cos 4x + c2 sin 4x

    Now,

    y(0) = 0 ⇒ 0 = c1

    ∴ y = c­2 sin 4x

    y’(x) = 4c2 cos 4x

    y’(0) = 4c2 = 1100

    ⇒ c2 = 275

    ∴ y(x) = 275 sin 4x

    ∴ y(1) = - 208.12

  • Question 9
    1 / -0

    If y = 3e2x + e-2x - αx is the solution of the initial value problem

    d2ydx2+βy=4αx,y(0)=4anddydx(0)=1. Where, α, β ϵ R, then

    Solution

    Explanation:

    y = 3e2x + e-2x – αx

    dydx=6e2x2e2xα

    Given that, dydx(0)=1

    ⇒ 1 = 6 – 2 - α

    ∴ α = 3

    d2ydx2+βy=4αx

    Complementary solution

    (D2 + β) = 0      ----(1)

    The given is, y = 3e2x + e-2x – αx

    It indicates, 2 and -2 are the roots of auxiliary equations.

    ⇒ (D + 2) (D – 2) = 0

    ⇒ D2 – 4 = 0

    By comparing this equation with equation (1)

    ∴ β = - 4

  • Question 10
    1 / -0
    Find the particular integral of (D3 - 1) y = x5 + 3x4 - 2x3 and expressing it as f(x), calculate f(1)
    Solution

    Concept:

    Particular integral in case of polynomial expression

    PI=f(x)f(D)

    Factorize f(D) and use (1 + x)-1 = 1 - x + x2 - x3 + …

    (1 - x)-1 = 1 + x + x2 + x3 + …

    Calculation:

    PI=f(x)=1D31(x5+3x42x3)

    PI = -1 (1 - D3)-1 (x5 + 3x4 - 2x3)

    ∴ PI = -1 (1 + D3 + D6 + D9 + …) (x5 + 3x4 - 2x3)

    Now,

    f(x) = -(x5 + 3x4 - 2x3) - (60x2 + 72x - 12)

    ∴ f(1) = -(1 + 3 - 2) - (60 + 72 - 12)

    ∴ f(1) = -2 - (60 + 60)

    f(1) = - 122

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now