Self Studies

Engineering Mathematics Test 7

Result Self Studies

Engineering Mathematics Test 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the integrating factor of the following differential equation.

    \(\frac{{dy}}{{dx}} + 2\;cosec\;xy = {\tan ^3}\left( {\frac{x}{2}} \right)\)
    Solution

    Concept:

    Integrating factor of \(\frac{{dy}}{{dx}} + Py = Q\left( x \right)\) is given by,

    IF = e∫ Pdx

    Calculation:

    P = 2 / sin x

    IF = e∫ 2 / sin x dx = e∫ 2 cosec xdx

    IF = e2 log (tan (x / 2))

    IF = tan2 (x / 2)

  • Question 2
    1 / -0
    Solve: x2 y’’ + 5y - 3xy’ = 0
    Solution

    Concept:

    The differential equation of the form \({x^n}\frac{{{d^n}y}}{{d{x^n}}} + {x^{n - 1}}\frac{{{d^{n - 1}}y}}{{d{x^{n - 1}}}} + \ldots + y = 0\) is called the Euler-Cauchy differential equation.

    To solve this, we substitute

    x = ez

    and replace the derivatives by dy / dz and we write

    \(\frac{{{d^n}y}}{{d{x^n}}} = D\left( {D - 1} \right) \ldots \left( {D - \left( {n - 1} \right)} \right)D = \frac{d}{{dz}}\)

    Write auxillary equation and equate = 0

    Calculation:

    x2y’’ + 5y - 3xy’ = 0

    ⇒ D (D - 1) - 3D + 5 = 0

    D2 - 4D + 5 = 0

    \(D = \frac{{4 \pm \sqrt {16 - 20} }}{2} \Rightarrow D = 2 \pm i\)

    ∴ Solution is: y = e2z [c1 cos z + c2 sin z]

    Z = ln (x)

    y = x2 [c1 cos (ln x) + c2 sin (ln x)]

  • Question 3
    1 / -0
    The particular integral of the differential equation (2D3 – 7D2 + 7D – 2) y = e-8x is
    Solution

    Explanation:

    Given:

    Differential equation: (2D3 – 7D2 + 7D – 2) y = e-8x

    Particular integral, \(PI=\frac{1}{f\left( D \right)}\phi \left( x \right)\)

    \(=\frac{1}{2{{D}^{3}}-7{{D}^{2}}+7D-2}{{e}^{-8x}}\)

    \(=\frac{1}{2{{\left( -8 \right)}^{3}}-7{{\left( -8 \right)}^{2}}+7\left( -8 \right)-2}{{e}^{-8x}}\)

    \(=-\frac{1}{1530}{{e}^{-8x}}\)
  • Question 4
    1 / -0
    Consider the differential equation \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{y}} = {{\rm{e}}^{\rm{x}}}\) with \({\rm{y}}\left( 0 \right) = 1\). Then the value of \({\rm{y}}\left( 1 \right)\) is
    Solution

    Explanation:

    \(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} + {\rm{y}} = {{\rm{e}}^{\rm{x}}},{\rm{y}}\left( 0 \right) = 1\)

    Integrating factor, \({\rm{IF}} = {{\rm{e}}^{\smallint {\rm{dx}}}} = {{\rm{e}}^{\rm{x}}}\)

    \(\begin{array}{l} {\rm{y}}\left( {{\rm{IF}}} \right) = \smallint \left( {{\rm{IF}}} \right){{\rm{e}}^{\rm{x}}}{\rm{dx}} + {\rm{C}}\\ {\rm{y}}.{{\rm{e}}^{\rm{x}}} = \frac{{{{\rm{e}}^{2{\rm{x}}}}}}{2} + {\rm{C}} \end{array}\)

    At x=0, y=1

    \(\therefore {\rm{C}} = \frac{1}{2}\)

    \(\therefore {\rm{y}}\left( 1 \right) = \frac{{\rm{e}}}{2} + \frac{{{{\rm{e}}^{ - 1}}}}{2} = \frac{1}{2}\left[ {{\rm{e}} + {{\rm{e}}^{ - 1}}} \right]\)

  • Question 5
    1 / -0
    Let y(x) be the solution of the differential equation \({\begin{array}{*{20}{c}} {\frac{d}{{dx}}\left( {x\frac{{dy}}{{dx}}} \right) = x;}&{y\left( 1 \right) = 0,\left. {\frac{{dy}}{{dx}}} \right|} \end{array}_{x = 1}} = 0\) then y(2) is
    Solution

    Explanation:

    \(\frac{d}{{dx}}\left( {x\frac{{dy}}{{dx}}} \right) = x\)

    \(\Rightarrow x\frac{{dy}}{{dx}} = \frac{{{x^2}}}{2} + {c_1}\)

    \({\left. {\frac{{dy}}{{dx}}} \right|_{x = 1}} = 0\)

    \(\Rightarrow 0 = \frac{1}{2} + {c_1} \Rightarrow {c_1} = - \frac{1}{2}\)

    \(\Rightarrow \frac{{dy}}{{dx}} = \frac{x}{2} - \frac{1}{{2x}}\)

    \(\Rightarrow y = \frac{{{x^2}}}{4} - \frac{1}{2}\ln x + {c_2}\)

    y(1) = 0

    \(\Rightarrow 0 = \frac{1}{4} - 0 + {c_2} \)

    \( {c_2} = - \frac{1}{4}\)

    \( y = \frac{{{x^2}}}{4} - \frac{1}{2}\ln x - \frac{1}{4}\)

    \( y\left( 2 \right) = \frac{3}{4} - \frac{1}{2}\ln 2\)
  • Question 6
    1 / -0

    For the differential equation \(\frac{{dx}}{{dt}} = 4x,\) the initial conditions are at

    t = 0, x = 6

    What is the value of x at t = s?
    Solution

    Concept:

    Variable separable differential equation.

    f(x) dx + f(y) dy = 0

    ⇒ ∫ f(x) dx + ∫ f(y) dy = c

    Calculation:

    Given:

    dx / dt = 4x

    \(\frac{1}{x}dx - 4dt = 0\)

    \(\frac{1}{x}dx - 4dt = 0\)

    \(\therefore \smallint \frac{1}{x}dx - \smallint 4dt = c\)

    ln (x) - 4t = c

    At t = 0, x = 6

    ∴ ln (6) = c

    Hence, the f(x) is, ln x = 4t + ln 6

    ⇒ ln (x / 6) = 4t

    x = 6e4t

    At, t = 5

    ∴ x = 6e20
  • Question 7
    1 / -0
    Solution of the differential equation is \(\frac{{dy}}{{dx}} = \sin \left( {x + y} \right) + \cos \left( {x + y} \right)\)
    Solution

    Explanation:

    \(x + y = t \Rightarrow \frac{{dy}}{{dx}} = \frac{{dt}}{{dx}} - 1\)

    \(\frac{{dy}}{{dx}} = \sin \left( {x + y} \right) + \cos \left( {x + y} \right)\)

    \(\frac{{dt}}{{dx}} - 1 = \sin t + \cos t \Rightarrow \frac{{dt}}{{dx}} = 1 + \cos t + \sin t\)

    \(\frac{{dt}}{{dx}} = 2{\cos ^2}\frac{t}{2} + 2\sin \frac{t}{2}\cos \frac{t}{2}\)

    \(\frac{{dt}}{{dx}} = 2{\cos ^2}\left( {\frac{t}{2}} \right)\left( {1 + \tan \frac{t}{2}} \right) = \frac{{2\left( {1 + \tan \frac{t}{2}} \right)}}{{{{\sec }^2}\frac{t}{2}}}\)

    \(\smallint dx = \smallint \frac{{{{\sec }^2}\frac{t}{2}}}{{2\left( {1 + \tan \left( {\frac{t}{2}} \right)} \right)}}dt\)

    \(x = ln\left( {1 + \tan \frac{t}{2}} \right) + c\)

    \(x = \ln \left( {1 + \tan \frac{1}{2}\left( {x + y} \right)} \right) + c\)

  • Question 8
    1 / -0

    Solve the given differential equation with initial condition y(0) = 0 and y’(0) = 1100 find the value of y(1).

    4y’’(x) + 64y(x) = 0 (round off to two decimal places)
    Solution

    Concept:

    Write the auxillary equation by replacing derivatives and dy / dx = m, \(\frac{{{d^2}y}}{{d{x^2}}} = {m^2}, \ldots \frac{{{d^n}y}}{{d{x^n}}} = {m^n}\) making RHS = 0

    → Solve auxillary equation for ‘m’.

    → for complex values of m = α ± iB.

    Complementary function = eαx [c1 cos B x + c2 sin B x]

    Calculation:

    4y’’(x) + 64y(x) = 0

    ⇒ 4m2 + 64 = 0

    ⇒ m2 = -16 ⇒ m = ± 4i

    ∴ y = c1 cos 4x + c2 sin 4x

    Now,

    y(0) = 0 ⇒ 0 = c1

    ∴ y = c­2 sin 4x

    y’(x) = 4c2 cos 4x

    y’(0) = 4c2 = 1100

    ⇒ c2 = 275

    ∴ y(x) = 275 sin 4x

    ∴ y(1) = - 208.12

  • Question 9
    1 / -0

    If y = 3e2x + e-2x - αx is the solution of the initial value problem

    \(\frac{{{d^2}y}}{{d{x^2}}} + \beta y = 4\alpha x,y\left( 0 \right) = 4\;and\frac{{dy}}{{dx}}\left( 0 \right) = 1\). Where, α, β ϵ R, then

    Solution

    Explanation:

    y = 3e2x + e-2x – αx

    \( - \frac{{dy}}{{dx}} = 6{e^{2x}} - 2{e^{ - 2x}} - \alpha \)

    Given that, \(\frac{{dy}}{{dx}}\left( 0 \right) = 1\)

    ⇒ 1 = 6 – 2 - α

    ∴ α = 3

    \(\frac{{{d^2}y}}{{d{x^2}}} + \beta y = 4\alpha x\)

    Complementary solution

    (D2 + β) = 0      ----(1)

    The given is, y = 3e2x + e-2x – αx

    It indicates, 2 and -2 are the roots of auxiliary equations.

    ⇒ (D + 2) (D – 2) = 0

    ⇒ D2 – 4 = 0

    By comparing this equation with equation (1)

    ∴ β = - 4

  • Question 10
    1 / -0
    Find the particular integral of (D3 - 1) y = x5 + 3x4 - 2x3 and expressing it as f(x), calculate f(1)
    Solution

    Concept:

    Particular integral in case of polynomial expression

    \(PI = \frac{{f\left( x \right)}}{{f\left( D \right)}}\)

    Factorize f(D) and use (1 + x)-1 = 1 - x + x2 - x3 + …

    (1 - x)-1 = 1 + x + x2 + x3 + …

    Calculation:

    \(PI = f\left( x \right) = \frac{1}{{{D^3} - 1}}\left( {{x^5} + 3{x^4} - 2{x^3}} \right)\)

    PI = -1 (1 - D3)-1 (x5 + 3x4 - 2x3)

    ∴ PI = -1 (1 + D3 + D6 + D9 + …) (x5 + 3x4 - 2x3)

    Now,

    f(x) = -(x5 + 3x4 - 2x3) - (60x2 + 72x - 12)

    ∴ f(1) = -(1 + 3 - 2) - (60 + 72 - 12)

    ∴ f(1) = -2 - (60 + 60)

    f(1) = - 122

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now