Concept:
Lumped system analysis is applicable if Bi ≤ 0.1
Biot Number, \({B_i} = \frac{{h{L_c}}}{k}\)
Characteristic length:
\({L_c} = \frac{V}{{{A_s}}}\)
Calculation:
Given: D = 1 mm, k = 35 W/m°C, ρ = 8500 kg/m3, Cp = 320 J/kg°C, h = 210 W/m2°C
For sphere:
\({L_c} = \frac{V}{{{A_c}}} = \frac{{\frac{1}{6}\pi {D^3}}}{{\pi {D^2}}} = \frac{D}{6} = \frac{1}{6}mm = \frac{{0.001}}{6}m\)
Lc = 1.67 × 10-4m
\({B_i} = \frac{{h{L_c}}}{K} = \frac{{210 \times 1.67 \times {{10}^{ - 4}}}}{{35}} = 0.001 < 0.1\)
In order to read 99% of the initial temperature difference (Ti - T∞):
\(\frac{{T\left( t \right) - {T_\infty }}}{{{T_i} - {T_\infty }}} = 0.01\)
\(\frac{{T - {T_\infty }}}{{{T_i} - {T_\infty }}} = {e^{ - \frac{{hA}}{{\rho CV}}t}}\)
\(\ln \left( {\frac{{T - {T_\infty }}}{{{T_i} - {T_\infty }}}} \right) = - \frac{{hA}}{{\rho CV}}t = \frac{h}{{\rho C{L_c}}}t\)
\(\ln \left( {0.01} \right) = - \frac{{210}}{{8500 \times 320 \times 1.67 \times {{10}^{ - 4}}}}t\)
-4.6051 = -0.46231 t
t = 9.96 s ≈ 10 s
Therefore, we must wait for at least 10 S for the temperature of the thermocouple junction to approach within 1 percent of the initial gas temperature difference.
Hint:
For example, when Ti = 0°C and T∞ = 100°C, a thermocouple is considered to have read 99 percent of this applied temperature difference when its reading indicates T(t) = 99°C
or T(t) = Ti + 0.99(T∞ - Ti)
T(t) = Ti - 0.99(Ti - T∞) = 0.01 Ti + 0.99 T∞
T(t) = 0.01 Ti - 0.01 T∞ + T∞ = 0.01 (Ti - T∞) + T∞
T(t) - T∞ = 0.01 (Ti - T∞)