Concept:
For flow over a flat plate:
\({R_e} = \frac{{Ux}}{\nu }\)
Re < 5 × 105 ⇒ Boundary layer is laminar
Re > 5 × 105 ⇒ Boundary layer is turbulent
For laminar flow:
Boundary layer thickness: \(\delta = \frac{{5x}}{{\sqrt {{R_{{e_x}}}} }}\)
Local Nusselt number: \(N{u_x} = \frac{{{h_x}x}}{k} = 0.332{\left( {Pr} \right)^{\frac{1}{3}}}{\left( {{R_{{e_x}}}} \right)^{1/2}}\)
Average Nusselt number: \({\overline {Nu} _L} = \frac{{\bar hL}}{K} = 0.664{\left( {Pr} \right)^{\frac{1}{3}}}{\left( {{R_{{e_L}}}} \right)^{1/2}}\)
Thermal Boundary layer thickness: \({\delta _t} = \frac{\delta }{{{{\left( {Pr} \right)}^{\frac{1}{3}}}}}\)
For turbulent flow:
\(N{u_x} = 0.0288\;R_{{e_x}}^{0.8}{\left( {Pr} \right)^{1/3}}\)
\({\overline {Nu} _L} = 0.036{\left( {{R_{{e_L}}}} \right)^{0.8}}{\left( {Pr} \right)^{1/3}}\)
Calculation:
At x = 0.5 m
\({R_{{e_x}}} = \frac{{Ux}}{\nu } = \frac{{5 \times 0.5}}{{20.76 \times {{10}^{ - 6}}}} = 1.2 \times {10^5} < 5 \times {10^5}\)
So the flow is laminar:
\(N{u_x} = 0.332{\left( {Pr} \right)^{\frac{1}{3}}}{\left( {{R_{{e_x}}}} \right)^{1/2}}\)
\(N{u_x} = 0.332{\left( {0.697} \right)^{\frac{1}{3}}}{\left( {1.2 \times {{10}^5}} \right)^{1/2}}\)
Nux = 101.9
\(N{u_x} = \frac{{{h_x}.x}}{K} \Rightarrow {h_x} = \frac{{N{u_x} \times k}}{x} = \frac{{101.9 \times 0.03}}{{0.5}} = 6.1\)
(h
x)
x=0.5 = 6.1 W/m
2K