Concept:
Coefficient of fluctuation of energy:
\({C_E} = \frac{{Maximum\;Fluctuation\;of\;energy}}{{Work\;done\;per\;cycle}}\)
Work done per cycle:
W = Tmean × θ
\({T_{mean}} = \frac{{P \times 60}}{{2\pi N}} = \frac{P}{\omega }\)
Work done per cycle:
\(W = \frac{{P \times 60}}{n}\)
θ = 2π (in case of steam engine and two stroke IC engine)
θ = 4π (in case of four stroke IC engine)
Coefficient of fluctuation of speed:
\({C_s} = \frac{{{\omega _{max}} - {\omega _{min}}}}{{{\omega _{mean}}}} = \frac{{2\left( {{\omega _1} - {\omega _2}} \right)}}{{{\omega _1} + {\omega _2}}}\)
Mean kinetic energy of flywheel:
\(E = \frac{1}{2}I{\omega ^2} = \frac{1}{2}m{k^2}{\omega ^2}\)
As the speed of the flywheel changes from ω1 to ω2, the maximum fluctuation of energy:
ΔE = 2ECs
Calculation:
\({C_s} = \frac{{1.005\;\omega - 0.995\;\omega }}{\omega } = 0.01\)
\(W = \frac{{P \times 60}}{N} = \frac{P}{\omega } \times 2\pi \)
\(W = \frac{{300}}{{9.5}} \times 2\pi = 198.42\;kN.m\)
The maximum fluctuation of energy:
ΔE = W × CE = 198.42 × 0.1 = 19.84 kN.m
ΔE = 2ECs = mk2ω2Cs
\(m = \frac{{{\rm{\Delta }}E}}{{{k^2}{\omega ^2}{C_s}}} = \frac{{19.84 \times {{10}^3}}}{{{{\left( 2 \right)}^2} \times {{\left( {9.5} \right)}^2} \times 0.01}}\)
∴ m = 5495.84 kg