`
Self Studies

Mechanical Vibrations Test 1

Result Self Studies

Mechanical Vibrations Test 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A vibratory system consists of a mass 15.7 kg, a spring of stiffness 1000 N/m and a dashpot damper. What is the critical damping of the system in Ns/m­­­­_________?
    Solution

    Concept:

    The critical system is when the damping ratio become 1.

    Natural frequency:

    \({\omega _n} = \sqrt {\frac{k}{m}}\)

    2ξωn = c/m

    Damping ratio:

    \(\xi = \frac{c}{{{c_c}}} = \frac{c}{{2\sqrt {km} }} = \frac{c}{{2m{\omega _n}}}\)

    Calculation:

    m = 15.7 kg, k = 1000 N/m

    For ξ = 1

    \(c = c_c= 2\sqrt {km} = 2\sqrt {1000 \times 15.7} = 250.60\;rad/s\)

  • Question 2
    1 / -0
    A spring mass damper system consists of mass of 25 kg and spring of stiffness 22 kN/m. If the damping is provided only 45 % of critical damping, then calculate the value of time period of vibration for this system_____ s
    Solution

    Explanation:

    Given:

    Mass (m) = 25 kg, k = 22,000 N/m, Damping provided = 45 %

    \(\xi = \frac{C}{{{C_c}}} = 0.45\)

    \({\rm{Natural\;frequency\;}}\left( {{\omega _n}} \right) = \sqrt {\frac{k}{m}} \)

    \({\omega _n} = \sqrt {\frac{{22000}}{{25}}} \)

    ωn = 29.66 rad/s

    Damped frequency (ωd)

    \({\omega _d} = {\omega _n}\;\sqrt {1 - {\xi ^2}} \)

    ωd = 26.49 rad/s

    Time period = 2π/ω

    ∴ T = 0.237 sec 

  • Question 3
    1 / -0

    Given a machine that is connected to the ground whose law of motion is given below. What is the maximum force in N that can get transmitted to the ground?

    \(3\overset{\ddot{\ }}{\mathop{x}}\,+14\dot{x}+72x=200\cos \left( 9t \right)\)

    Solution

    Concept:

    Motion of Forced damped vibration:

    \(m\overset{\ddot{\ }}{\mathop{x}}\,+c\dot{x}+kx=F\cos \left( \omega t \right)\) ------(1)

    \({{\omega }_{n}}=\sqrt{\frac{{{K}_{eq}}}{m}}\)

    Damping factor: \(\xi =\frac{c}{{{c}_{c}}}=\frac{c}{2\sqrt{km}}\)

    \(T=\frac{{{F}_{T}}}{{{F}_{un}}}=\frac{\sqrt{1+{{\left( 2\xi \frac{\omega }{{{\omega }_{n}}} \right)}^{2}}}}{\sqrt{{{\left( 1-{{\left( \frac{\omega }{{{\omega }_{n}}} \right)}^{2}} \right)}^{2}}+{{\left( 2\xi \frac{\omega }{{{\omega }_{n}}} \right)}^{2}}~}}\)

    Calculation:

    Given:

    \(3\overset{\ddot{\ }}{\mathop{x}}\,+14\dot{x}+72x=200\cos \left( 9t \right)\)

    On comparing the above equation with equation 1

    m = 3 kg, c = 14 Ns/m, K = 72 N/m, ω = 9 rad/s, F = 200 N

    \({{\omega }_{n}}=\sqrt{\frac{{{K}_{eq}}}{m}}=\sqrt{\frac{72}{3}}=4.9~rad/s\)

    \(\xi =\frac{c}{2\sqrt{km}}=\frac{14}{2\times \sqrt{72\times 3}}=0.4763\)

    \(\frac{\omega }{{{\omega }_{n}}}=\frac{9}{4.9}=1.837\)

    \(T=\frac{{{F}_{T}}}{{{F}_{un}}}=\frac{\sqrt{1+{{\left( 2\xi \frac{\omega }{{{\omega }_{n}}} \right)}^{2}}}}{\sqrt{{{\left( 1-{{\left( \frac{\omega }{{{\omega }_{n}}} \right)}^{2}} \right)}^{2}}+{{\left( 2\xi \frac{\omega }{{{\omega }_{n}}} \right)}^{2}}~}}\)

    \(T=\frac{\sqrt{1+{{\left( 2\times 0.4763\times 1.837 \right)}^{2}}}}{\sqrt{{{\left( 1-{{\left( 1.837 \right)}^{2}} \right)}^{2}}+{{\left( 2\times 0.4763\times 1.837 \right)}^{2}}~}}=\frac{2.015}{2.95}=0.683\)

    \({{F}_{T}}=T\times {{F}_{un}}=0.683\times 200=136.6~N\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now