Concept:
Motion of Forced damped vibration:
\(m\overset{\ddot{\ }}{\mathop{x}}\,+c\dot{x}+kx=F\cos \left( \omega t \right)\) ------(1)
\({{\omega }_{n}}=\sqrt{\frac{{{K}_{eq}}}{m}}\)
Damping factor: \(\xi =\frac{c}{{{c}_{c}}}=\frac{c}{2\sqrt{km}}\)
\(T=\frac{{{F}_{T}}}{{{F}_{un}}}=\frac{\sqrt{1+{{\left( 2\xi \frac{\omega }{{{\omega }_{n}}} \right)}^{2}}}}{\sqrt{{{\left( 1-{{\left( \frac{\omega }{{{\omega }_{n}}} \right)}^{2}} \right)}^{2}}+{{\left( 2\xi \frac{\omega }{{{\omega }_{n}}} \right)}^{2}}~}}\)
Calculation:
Given:
\(3\overset{\ddot{\ }}{\mathop{x}}\,+14\dot{x}+72x=200\cos \left( 9t \right)\)
On comparing the above equation with equation 1
m = 3 kg, c = 14 Ns/m, K = 72 N/m, ω = 9 rad/s, F = 200 N
\({{\omega }_{n}}=\sqrt{\frac{{{K}_{eq}}}{m}}=\sqrt{\frac{72}{3}}=4.9~rad/s\)
\(\xi =\frac{c}{2\sqrt{km}}=\frac{14}{2\times \sqrt{72\times 3}}=0.4763\)
\(\frac{\omega }{{{\omega }_{n}}}=\frac{9}{4.9}=1.837\)
\(T=\frac{{{F}_{T}}}{{{F}_{un}}}=\frac{\sqrt{1+{{\left( 2\xi \frac{\omega }{{{\omega }_{n}}} \right)}^{2}}}}{\sqrt{{{\left( 1-{{\left( \frac{\omega }{{{\omega }_{n}}} \right)}^{2}} \right)}^{2}}+{{\left( 2\xi \frac{\omega }{{{\omega }_{n}}} \right)}^{2}}~}}\)
\(T=\frac{\sqrt{1+{{\left( 2\times 0.4763\times 1.837 \right)}^{2}}}}{\sqrt{{{\left( 1-{{\left( 1.837 \right)}^{2}} \right)}^{2}}+{{\left( 2\times 0.4763\times 1.837 \right)}^{2}}~}}=\frac{2.015}{2.95}=0.683\)
\({{F}_{T}}=T\times {{F}_{un}}=0.683\times 200=136.6~N\)