Concept:
\({\rm{Total\;acceleration\;}}\left( a \right) = \sqrt {a_x^2 + a_y^2} \)
\({a_x} = u \cdot \frac{{\partial u}}{{\partial x}} + v \cdot \frac{{\partial u}}{{\partial y}}\)
\({a_y} = u \cdot \frac{{\partial v}}{{\partial x}} + v \cdot \frac{{\partial v}}{{\partial y}}\)
\({\rm{Also}},{\rm{\;}}u = \frac{{ - \partial \psi }}{{dy}}\;\;;\;\;v = \frac{{\partial \psi }}{{\partial x}}\)
Calculation:
Ψ = 2x2y (Given)
\(u = \frac{{ - \partial }}{{dy}}\left( {2{x^2}y} \right) = - 2{x^2} = - 2\left( {{2^2}} \right) = - 8\)
\(v = \frac{\partial }{{\partial x}}\left( {2{x^2}y} \right) = 4xy = 4\left( 2 \right) = 8\)
\({a_x} = \left( { - 8} \right)\;\frac{\partial }{{\partial x}}\left( { - 2{x^2}} \right) + 8 \cdot \frac{\partial }{{\partial y}}\left( { - 2{x^2}} \right)\;\)
ax = (-8)(-4x) + 0 = 32x = 64
\({a_y} = \left( { - 8} \right)\frac{\partial }{{\partial x}}\left( {4xy} \right) + \left( 8 \right)\frac{\partial }{{\partial y}}\left( {4xy} \right)\;\)
ay = (-8)(4y) + 8(4x)
∴ ay = -32 + 64 = 32
Now,
\({\rm{Total\;acceleration\;}}\left( a \right) = \sqrt {a_x^2 + a_y^2} \)
\({\rm{Total\;acceleration\;}}\left( {\rm{a}} \right) = \sqrt {{{64}^2} + {{32}^2}} \)
∴ Total acceleration (a) = 71.55