Concept:
Specific Gravity or Relative Density: The ratio of the density of the fluid to the density of water—usually 1000 kg/m3 at a standard condition—is defined as Specific Gravity or Relative Density of fluids
∴ The density of fluid = Relative Density × Density of water
Poise = 0.1 Ns/m2 = 0.1 kg/ms
Calculation:
Given data,
RD = 0.8 ⇒ ρ = 0.8 × 1000 = 800 kg/m3
Prototype | Model |
DP = 1.8 m | Dm = 0.2 m |
ρP = 800 kg/m3 | ρm = 1000 kg/m3 |
μP = 0.004 kg/ms | μm = 0.001 kg/ms |
QP = 4 m3/s | Qm = ? |
(Re)P = (Re)m
\({{\left( \frac{ρ VD}{\mu } \right)}_{P}}={{\left( \frac{ρ VD}{\mu } \right)}_{m}}\) ...(1)
\(\frac{{{\rho _m}}}{{{\rho _P}}}.\frac{{{V_m}}}{{{V_P}}}.\frac{{{D_m}}}{{{D_P}}}.\frac{{{\mu _P}}}{{{\mu _m}}} = 1\)
\(\frac{{1000}}{{800}} × \frac{{{V_m}}}{{{V_P}}} × \frac{{0.2}}{{1.8}} × \frac{{0.004}}{{0.001}} = 1\)
\(\frac{{{V_m}}}{{{V_P}}} = 1.8\)
\(\frac{{{Q_m}}}{{{Q_P}}} = \frac{{{A_m}{V_m}}}{{{A_P}{V_P}}} = {\left( {\frac{{{D_m}}}{{{D_P}}}} \right)^2} × \frac{{{V_m}}}{{{V_P}}}\)
\(\frac{{{Q_m}}}{{{Q_P}}} = {\left( {\frac{{0.2}}{{1.8}}} \right)^2} × 1.8 = 0.0222\)
Qm = 0.0222 × QP = 0.0222 × 4 = 0.08888 m3/s
1 litre = 1000 cm3 = 10-3 m3
∴ 1 m3/s = 1000 litre/s
Qm = 0.08889 m3/s
∴ Qm = 88.89 litres/s