For the ball projected with velocity \(V _{1}\) at an angle \(\theta_{1}\) with horizontal line, the horizontal distance covered after \(t\) time.

\(x_{1}=V_{1} \cos \theta_{1} t\)
Similarly, for second ball throw with velocity \(V _{2}\) at an angle \(\theta_{2}\) with horizontal, horizontal distance covered after time \(t .\)
\(x_{2}=V_{2} \cos \theta_{2} t\)
The vertical distance covered are
\(y_{1}=V_{1} \sin \theta_{1} t-\frac{1}{2} g t^{2}\)
and \( y_{2}=V_{2} \sin \theta_{2} t-\frac{1}{2} g t^{2}\)
\(\therefore x_{2}-x_{1}=\left(V_{2} \cos \theta_{2}-V_{1} \cos \theta_{1}\right) t\)
and \(y_{2}-y_{1}=\left(V_{2} \sin \theta_{2}-V_{1} \sin \theta_{1}\right) t\)
\(\therefore \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{V_{2} \sin \theta_{2}-V_{1} \sin \theta_{1}}{V_{2} \cos \theta_{2}-V_{1} \cos \theta_{1}}\)
but \(V_{1} \cos \theta_{1}=V_{2} \cos \theta_{2}\)
\(\therefore \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{V_{2} \sin \theta_{2}-V_{1} \sin \theta_{1}}{0}=\infty\)
\(\Rightarrow x_{2}-x_{1}=0\)
and \( y_{2}-y_{1}=\infty\)
This means line joining the position of particles after time \(t\) will be a straight line and parallel to the \(y\)-axis.