Self Studies

Mathematics Test - 12

Result Self Studies

Mathematics Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    A box contains 5 green pencils and 7 yellow pencils. Two pencils are chosen at random from the box without replacement. What is the probability they are both yellow?

    Solution

    Event A is choosing a yellow pencil first, and Event \(\mathrm{B}\) is choosing a yellow pencil second.

    Initially, there are 12 pencils, 7 of which are yellow.

    Probability the first pencil is yellow \(=\mathrm{P}(\mathrm{A})=\frac{7}{12}\)

    If a yellow pencil is chosen, there will be 11 pencils left, 6 of which are yellow.

    Probability the second pencil is yellow \(=\mathrm{P}(\mathrm{B})=\frac{6}{11}\)

    Two pencils are chosen at random from the box without replacement.

    So events are independent of each other.

    Probability they are both yellow:

    \(=P(A \cap B)=P(A) \times P(B)\)

    \(=\frac{7}{12} \times \frac{6}{11}=\frac{7}{22}\)

  • Question 2
    4 / -1

    A stone tied to the end of a string \(80 \mathrm{~cm}\) long is whirled in a horizontal circle with a constant speed. If the stone make \(14\) revolutions in \(25 \mathrm{~sec}\), what is the magnitude of the acceleration of the stone?

    Solution

    Given the length of the string is \(80 \mathrm{~cm}=0.8 \mathrm{~m}\)

    It makes \(14\) revolutions in \(25 \mathrm{sec}\)

    Frequency is defined as the number of events that are occurring ina given period of time. Its formula is

    \(\mathrm{f}= \frac{\text{No. of revolutions }}{\text{time}}\)

    Frequency of the string will be \(\mathrm{f}=\frac{14}{25}\)

    Now,

    Angular speed is defined as the rate of change of angular displacement. In one rotation, angular distance is \(2 \pi\) and the time period is \(T\)

    Angular speed is given by formula

    \(\Rightarrow \omega=\frac{2 \pi}{t}\)

    We know that,

    \(\frac{1}{t}=\mathrm{f} \)

    \(\Rightarrow \omega=2 \times \pi\times \mathrm{f}\)

    Where \(\omega\) is the angular speed \(\mathrm{f}\) is the frequency

    Substituting values in the above formula,

    \(\Rightarrow \omega=2 \pi \times \frac{14}{25} \)

    \(\Rightarrow \omega=\frac{28 \pi}{25} \mathrm{rad} / \mathrm{sec}\)

    Also acceleration of a rotating body is given by

    \(a=\omega^{2} \mathrm r\)

    \(\omega\) is the angular speed of the stone

    \(r\) is the radius

    \(\Rightarrow a=0.8 \times\left(\frac{28 \pi}{25}\right)^{2} \)

    \(\Rightarrow a=0.8 \times \frac{784 \times 9.859}{625}=\frac{6183.564}{625} \)

    \(\Rightarrow a=9.89 \mathrm{~m} / \mathrm{s}^{2}\)

    So The magnitude of the acceleration of the stone is \(9.89 \mathrm{~m} / \mathrm{s}^{2}\).

  • Question 3
    4 / -1

    An external force of \(1 \mathrm{~N}\) is applied on the block of \(1 \mathrm{~kg}\) as shown in the figure. The magnitude of the friction force \(F_{s}\) is (where, \(\mu=0.3, g=10 \mathrm{~m} / \mathrm{s}^{2}\) ):

    Solution

    Given,

    \(\mu=0.\)

    \(g=10 \mathrm{~m} / \mathrm{s}^{2}\)

    Normal Reaction \((\mathrm{N})=1 \mathrm{~kg} \times 10=10 \mathrm{~N}\)

    Friction force will be minimum of applied force or \((\mu \times\) Normal reaction)

    Friction force \(\left({F}_{\mathrm{s}}\right)=\) Minimum of \(\{1 \mathrm{~N}, \mu \times \mathrm{N}\}\)

    Friction force \(\left(F_{s}\right)=\) Minimum of \(\{1 \mathrm{~N}, 0.3 \times 10\}\)

    Friction force \(\left(F_{s}\right)=\) Minimum of \(\{1 \mathrm{~N}, 3 \mathrm{~N}\}\)

    Friction force \(\left(F_{s}\right)=1 \mathrm{~N}\)

  • Question 4
    4 / -1
    The domain of the derivative of the function
    \(f(x)=\left\{\begin{array}{l}\tan ^{-1} x, \quad |x| \leq 1 \\ \frac{1}{2}(|x|-1),\quad |x|>1\end{array}\right.\)
    Solution
    We have to find the domain of the function \(f(x)=\left\{\begin{array}{l}\tan ^{-1} x, \quad |x| \leq 1 \\ \frac{1}{2}(|x|-1), \quad|x|>1\end{array}\right.\)
    Using the definition of modulus function , we have
    \(f(x)=\left\{\begin{array}{l}\frac{1}{2}(-x-1), \quad x<-1 \\ \tan^{-1} x, \quad -1 \leqslant x \leqslant 1 \ldots \\ \frac{1}{2}(x-1), \quad x>1\end{array}\right.\)(i)
    It is clear from equation (i) that \(f(x)\) is discontinuous at \(x = 1\) and \(-1\).
    \(\Rightarrow f(x)\) is not differentiable at \(x=-1,1\)
    \([\because\) Not continuous \(\Rightarrow\) not differentiable]
    \(\Rightarrow f(x)\) is differentiable at \(x \in {R}\) all except \(1\) and \(-1\)
    Therefore, domain of \(f(x) \in {R}-\{-1,1\}\).
  • Question 5
    4 / -1
    Find the cartesian equation of the line that passes through the point with position vector \(\hat{i}+2 \hat{j}+\hat{k}\) and is in the direction of the vector \(\hat{i}-2 \hat{j}+3 \hat{k}\) ?
    Solution

    Given,

    The required line passes through the point with position vector \(\hat{i}+2 \hat{j}+\hat{k}\)

    \(x_{1}=1, y_{1}=2, z_{1}=1\).

    The required line is in the direction of the vector \(\hat{i}-2 \hat{j}+3 \hat{k}\) i.e the required line is parallel to the vector \(\hat{i}-2 \hat{j}+3 \hat{k}\)

    \(a=1, b=-2, c=3\).

    Now,

    We know that,

    The cartesian equation of line through a point \(\left(x_{1}, y_{1}, z_{1}\right)\) and having direction ratios \(a, b, c\) is given by:

    \(\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}\).

    \(\therefore\) The Cartesian equation of the required line is: \(\frac{x-1}{1}=\frac{y-2}{-2}=\frac{z-1}{3}\)

  • Question 6
    4 / -1

    The relation \(|3-z|+|3+z|=5\) represents:

    Solution
    Concept:
    The equation of a hyperbola is of the form:
    \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\) when the centre is at origin and foci are on \(\mathrm{X}\) -axis \(\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1\) when the centre is at origin and foci are on \(Y\) -axis.
    Calculation:
    Given: \(|3-z|+|3+z|=5\)
    BY substituting \(z=x+\) iy in the above equation we get,
    \(\Rightarrow|3-(x+i y)|+|3+(x+i y)|=5\)
    \(\Rightarrow|3-x-i y|+|3+x+i y|=5\)
    \(\Rightarrow \sqrt{(3-x)^{2}+y^{2}}+\sqrt{(3+x)^{2}+y^{2}}=5\)
    \(\Rightarrow \sqrt{(3-x)^{2}+y^{2}}=5-\sqrt{(3+x)^{2}+y^{2}}\)
    \(\Rightarrow(3-x)^{2}+y^{2}=5^{2}+(3+x)^{2}+y^{2}-10 \sqrt{(3+x)^{2}+y^{2}}\)
    \(\Rightarrow 9+x^{2}-6 x+y^{2}=25+9+x^{2}+6 x+y^{2}-10 \sqrt{(3+x)^{2}+y^{2}}\)
    \(\Rightarrow 25+12 x=10 \sqrt{(3+x)^{2}+y^{2}}\)
    \(\Rightarrow 625+144 x^{2}+600 x=100\left(x^{2}+y^{2}+6 x+9\right)\)
    \(\Rightarrow 625+144 x^{2}=100 x^{2}+100 y^{2}+900\)
    \(\Rightarrow 44 x^{2}-100 y^{2}=275\)
    It is an equation of hyperbola.
  • Question 7
    4 / -1

    If \(a+b+c=18, a^{2}+b^{2}+c^{2}=110\) and \(a^{3}+b^{3}+c^{3}=684\), then find the value of \(a b c\).

    Solution

    Given:

    \(a+b+c=18, a^{2}+b^{2}+c^{2}=110\) and \(a^{3}+b^{3}+c^{3}=684\)

    Formula Used:

    \((a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)\)

    \(a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)\)

    \(\Rightarrow 18^{2}=110+2(a b+b c+c a)\)

    \(\Rightarrow a b+b c+c a=\frac{(324-110)}{2}\)

    \(\Rightarrow(a b+b c+c a)=107\) ....(1)

    Now,

    \(684-3 a b c=18(110-107)\)

    \(\Rightarrow 684-3 a b c=54\)

    \(\Rightarrow 3 a b c=684-54\)

    \(\Rightarrow 3 a b c=630\)

    \(\therefore a b c=210\)

  • Question 8
    4 / -1

    If \(x=\frac{\sqrt{3}}{2}\), then the value of \(\left(\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\right)\) is:

    Solution

    Given,

    \(x=\frac{\sqrt{3}}{2}\)

    \(\left(\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\right)\)

    \(=\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}} \times \frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\)

    \(=\frac{(\sqrt{1+x}+\sqrt{1-x})^{2}}{(\sqrt{1+x})^{2}-(\sqrt{1-x})^{2}}\)

    \(=\frac{1+x+1-x+2 \sqrt{1-x^{2}}}{1+x-1+x}\)

    \(=\frac{2+2 \sqrt{1-x^{2}}}{2 x}\)

    \(=\frac{1+\sqrt{1-x^{2}}}{x}\)

    \(=\frac{1+\sqrt{1-\frac{3}{4}}}{\sqrt{3}} \times 2\)

    \(=\frac{\left(1+\frac{1}{2}\right)}{\sqrt{3}} \times 2\)

    \(=\frac{\frac{3}{2} \times 2}{\sqrt{3}}\)

    \(=\sqrt{3}\)

  • Question 9
    4 / -1

    A \(5 ~m\) long ladder is resting on a smooth vertical wall with its lower end \(3 ~m\) from the wall. What should be the coefficient of friction between the ladder and the floor for equilibrium?

    Solution

    Given,

    Length of ladder \((A B)=5 \mathrm{~m}, \mathrm{OB}=3 \mathrm{~m}\)

    Let \(W\) will be the weight of the ladder, \(N_{B}\) and \(N_{A}\) will be support reaction, \(\theta\) is the angle between ladder and floor and \(\mu\) is the friction coefficient between ladder and floor.

    \(O A^{2}=A B^{2}-O B^{2}\)

    \( O A^{2}=5^{2}-3^{2}\)

    \(OA=4m\)

    From \(\triangle \mathrm{OAB}\),

    \(\cos \theta=\frac{3}{5}\)

    Now apply \(\sum F_{y}=0\)

    \(\mathrm{N}_{\mathrm{B}}=\mathrm{W}\)

    Now take moment about point \(A\), which should be equal to zero

    \(\sum M_{2}=0\)

    \(\left(\mu N_{B} \times 4\right)+\left(W \times \frac{5}{2} \times \cos \theta\right)=N_{B} \times 3\)

    \(\left(\mu N_{B} \times 4\right)+\left(N_{B} \times \frac{5}{2} \times \frac{3}{5}\right)=N_{B} \times 3\)

    \((\mu \times 4)+\left(\frac{3}{2}\right)=3\)

    \(\mu=\frac{3}{8}\)

    Thus, the value of the coefficient of friction between ladder and floor will be \(\frac{3}{8}\).

  • Question 10
    4 / -1

    The critical point and nature for the function \(\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}-2 \mathrm{x}+2 \mathrm{y}^{2}+4 \mathrm{y}-2\) is:

    Solution

    Given:

    \(f(x, y)=x^{2}-2 x+2 y^{2}+4 y-2\)

    Partial derivatives:

    \(f^{\prime}(x)=2 x-2\) and \(f^{\prime}(y)=4 y+4\)

    Now, for critical points, \(f(x)=0\)

    \( 2 x-2=0\)

    \( x=1,\)

    Also, \(f^{\prime}(y)=0\)

    \( 4 y+4=0\)

    \( y=-1,\)

    So, critical points (1,-1)

    \(f^{\prime \prime}(x)=2>0\) and \(f^{\prime}(y)=4>0\)

    So, at (1,-1) minimum.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now