Given,
\(y=(\tan x)^{\tan x^{\tan x} }...(1)\)
As we know,
\(\log _{b}\left(M^{p}\right)=p \log _{b}(M)\)
\(\log _{b}(M N)=\log _{b}(M)+\log _{b}(N)\)
Taking log on both sides, we get
\(\log y=\log (\tan x)^{\tan x^{\tan x}}\)
\(\log y=(\tan x)^{\tan x} \log (\tan x)\)
Again, taking log on both sides, we get
\(\log (\log y)=\log (\tan x)^{\tan x}+\log (\log (\tan x))\)
\(\log (\log y)=\tan x \log (\tan x)+\log (\log (\tan x))\)
As we know,
\(\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}[f(x)]\)
\(\frac{d}{d x} \tan x=\sec ^{2} x\)
\(\frac{d}{d x} \log x=\frac{1}{x}\)
Now, differentiating with respect to \(x\), we get
\(\frac{1}{\log y} \cdot \frac{1}{y} \cdot \frac{d y}{d x}=\tan x\left(\frac{\sec ^{2} x}{\tan x}\right)+\sec ^{2} x \log (\tan x)+\frac{1}{\log (\tan x)} \cdot \frac{1}{\tan x} \cdot \sec ^{2} x\)
\(\frac{d y}{d x}=y \log y\left[\tan x\left(\frac{\sec ^{2} x}{\tan x}\right)+\sec ^{2} x \log (\tan x)+\frac{1}{\log (\tan x)} \cdot \frac{1}{\tan x} \cdot \sec ^{2} x\right]\)
At \(x=\frac{\pi}{4}\),
From equation \((1)\), we get
\(y=(\tan \frac{\pi}{4})^{\tan \frac{\pi}{4}^{tan\frac{\pi}{4}} }\)
\(y=1^{1^{1}}=1\)
\(\log y=\log 1=0\)
So,\(\frac{d y}{d x} _{(x= \frac{x}{4})}=0\)