Self Studies

Mathematics Test - 8

Result Self Studies

Mathematics Test - 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If three coplanar concurrent forces acting at a point ' \(O\) ' are in equilibrium thenthe ratio of \(\frac{T_{1} }{ T_{2}}\) and \(\frac{T_{1} }{ T_{3}}\) respectively will be:

    Solution

    From the given figure we have

    According to Lami,s theorem,

    \(\frac{A}{\sin \alpha}=\frac{B}{\sin \beta}=\frac{C}{\sin \gamma}\)

    \(\frac{T_{1}}{\sin (120^{\circ})}=\frac{T_{2}}{\sin (150^{\circ})}=\frac{T_{3}}{\sin (90^{\circ})} \)

    Then we can write,

    \(\frac{T_{1}}{\sin (120^{\circ})}=\frac{T_{2}}{\sin (150^{\circ})}\)

    \(\frac{T_{1}}{\frac{\sqrt3}{2}}=\frac{T_{2}}{\frac{1}{2}}\)

    \(\frac{T_{1}}{T_{2}}=\sqrt{3}\)

    Again, \(\frac{T_{1}}{\sin (120^{\circ})}=\frac{T_{3}}{\sin (90^{\circ})} \)

    \(\frac{T_{1}}{\frac{\sqrt3}{2}}=\frac{T_{3}}{1} \)

    \(\frac{T_{1}}{T_{3}}=\frac{\sqrt{3}}{2}\)

    By solving the above equation, we get

    \(\frac{T_{1}}{T_{2}}=\sqrt{3}\) and \(\frac{T_{1}}{T_{3}}=\frac{\sqrt{3}}{2}\)

  • Question 2
    4 / -1

    Differentiate the following.

    Solution

    \(x^8+12 x^5-4 x^4+10 x^3-6 x+5\)

    If \(f\) and \(g\) are both differentiable, then

    \(\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)\)

    As we know,

    \(\frac{d}{d x}\left(x^n\right)=n x^{n-1}\)

    Differentiating with respect to \(x\), we get

    \(\frac{d}{d x}\left(x^8+12 x^5-4 x^4+10 x^3-6 x+5\right)=\frac{d}{d x}\left(x^8\right)+12 \frac{d}{d x}\left(x^5\right)-4 \frac{d}{d x}\left(x^4\right)+10 \frac{d}{d x}\left(x^3\right)-6 \frac{d}{d x}(x)+\frac{d}{d x}(5)\)

    \(=8 x^7+12\left(5 x^4\right)-4\left(4 x^3\right)+10\left(3 x^2\right)-6(1)+0 \)

    \(=8 x^7+60 x^4-16 x^3+30 x^2-6\)

  • Question 3
    4 / -1

    For \(x>1,(2 x)^{2 y}=4 e^{2 x-2 y}\), then \(\left(1+\log _{e} 2 x\right)^{2} \frac{d y}{d x}\) is equal to:

    Solution

    Given,

    \((2 x)^{2 y}=4 e^{2 x-2 y}\)

    As we know,

    \(\log _{b}\left(M^{p}\right)=p \log _{b}(M)\)

    \(\log _{b}(M N)=\log _{b}(M)+\log _{b}(N)\)

    Taking \(log\) both sides, we get

    \(\ln (2 x)^{2 y}= \ln 4 e^{2 x-2 y}\)

    \( \Rightarrow\ln (2 x)^{2 y}=\ln 4+\ln (2 x-2 y)\)

    \(\Rightarrow2 y \ln (2 x)=\ln 2^2+(2 x-2 y)\)

    \(\Rightarrow 2 y \ln (2 x)=2 \ln 2+(2 x-2 y)...(1)\)

    \(\Rightarrow y \ln (2 x)=\ln 2+(x-y)\)

    \(\Rightarrow y(1+\ln 2 x)=x+\ln 2\)

    \(\therefore y=\frac{x+\ln 2}{1+\ln (2 x)}....(2)\)

    As we know,

    \(\frac{d}{d x}\left(\ln x\right)=\frac{1}{x }\)

    If \(f\) and \(g\) are both differentiable, then

    \(\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}[f(x)]\)

    Differentiating equation \((1)\) with respect to \(x\), we get

    \(2 y \times \frac{1}{2 x} \times 2+2 \ln (2 x) \frac{d y}{d x}=0+2-2 \frac{d y}{d x}\)

    \(\Rightarrow 2[1+\ln (2 x)] \frac{d y}{d x}=2-\frac{2 y}{x}\)

    \(\Rightarrow[1+\ln (2 x)] \frac{d y}{d x}=1-\frac{y}{x}....(3)\)

    Put equation \((2)\) in equation \((3)\), we get

    \(\Rightarrow[1+\ln (2 x)] \frac{d y}{d x}=1-\frac{\frac{x+\ln 2}{1+\ln (2 x)}}{x}\)

    \(\Rightarrow[1+\ln (2 x)] \frac{d y}{d x}=1-\frac{1}{x}\left(\frac{x+\ln 2}{1+\ln 2 x}\right)\)

    \(\Rightarrow[1+\ln (2 x)]^{2} \frac{d y}{d x}=\frac{x+x \ln (2 x)-x-\ln 2}{x}\)

    \(\Rightarrow[1+\ln (2 x)]^{2} \frac{d y}{d x}=\frac{x \ln (2 x)-\ln 2}{x}\)

    \(\Rightarrow[1+\log_e (2 x)]^{2} \frac{d y}{d x}=\frac{x \log_e (2 x)-\log_e 2}{x}\)

  • Question 4
    4 / -1

    The feasible solution for a LPP is shown in Figure. Let \(\mathrm{Z}=3 {x}-4 {y}\) be the Objective function, Maximum of \(\mathrm{Z}\) occurs at:

    Solution

    Given,

    The Objective function is,

    \(\mathrm{Z}=3 {x}-4 {y}\)

    At \( (0,0) \),

    \(\mathrm{Z}=3 \times 0-4 \times 0=0\)

    At \( (5,0) \),

    \(\mathrm{Z}=3 \times 5-4 \times 0=15\)

    At \( (6,5) \),

    \(\mathrm{Z}=3 \times 6-4 \times 5=-2\)

    At \( (6,8) \),

    \(\mathrm{Z}=3 \times 6-4 \times 8=-14\)

    At \( (4,10) \),

    \(\mathrm{Z}=3 \times 4-4 \times 10=-28\)

    At \( (0,8) \),

    \(\mathrm{Z}=3 \times 0-4 \times 8=-32\)

    Maximum of \(\mathrm{Z}\) occurs at\( (5,0) \).

  • Question 5
    4 / -1

    Two wires AO and BO support a vertical load W at O as shown in the figure below. The wires are of equal length and equal cross-sectional area. The tension in each wire is equal to:

    Solution

    The horizontal force is, \(\Sigma F_{x}=0\)

    And vertical force is, \(\Sigma F_{y}=0\)

    Given,

    \(\Sigma F_{x}=-T_{A} \cos 45^{\circ}+T_{B} \cos 45^{\circ}=0\)

    \(\therefore T_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}} \ldots \ldots .(i)\)

    \(\Sigma F_{y}=T_{A} \sin 45^{\circ}+T_{B} \sin 45^{\circ}-W=0\)

    \(\therefore\left(T_{A}+T_{B}\right) \sin 45^{\circ}=W\)

    \(2 T_{A} \times \sin 45^{\circ}=W\)

    \(\therefore T_{A}=\frac{W}{\sqrt{2}}\)

  • Question 6
    4 / -1

    A weight of \(1000 N\) is supported by two chains as shown in Figure. What will be the tension in Chain-\(1\) and Chain-\(2\) respectively?

    Solution

    Given,

    \(P_{3}=1000 {N}\)

    \(P_{1}, P_{2}\) and \(P_{3}\) are the three forces lying on the same plane and passing through a common point.

    \(\alpha=\) Angle between \(P_{2}\) and \(P_{3} = 120^{\circ}\)

    \(\beta=\) Angle between \(P_{1}\) and \(P_{3} = 150^{\circ}\)

    \(\gamma=\) Angle between \(P_{1}\) and \(P_{2} = 90^{\circ}\)

    Applying Lami’s theorem:

    \(\frac{P_{1}}{\sin \alpha}=\frac{P_{2}}{\sin \beta}=\frac{P_{3}}{\sin \gamma}\)

    \(\frac{P_{1}}{\sin \alpha}=\frac{P_{3}}{\sin \gamma}\)

    \(\Rightarrow \frac{P_{1}}{\sin 120}=\frac{1000}{\sin 90^{\circ}}\)

    \(\Rightarrow P_{1}=1000 \times \sin 120^{\circ} \quad(\because \sin 90^{\circ}=1)\)

    \(\therefore P_{1}=866 \mathrm{~N}\)

    \(\frac{P_{2}}{\sin \beta}=\frac{P_{3}}{\sin \gamma}\)

    \(\Rightarrow P_{2}=1000 \times \sin 150(\because \sin 90^{\circ}=1)\)

    \(\therefore \mathrm{P}_{2}=500 \mathrm{~N}\)

    Therefore, Chain \(1(P _2)=500 \mathrm{~N}\), Chain \(2(\mathrm{P}_{1})=866 \mathrm{~N}\)

  • Question 7
    4 / -1

    The number of generator of a finite cyclic group of order 28 is:

    Solution
    Let a cyclic group G of order 28 generated by an element a, then
    \({o}({a})={o}({G})=28\)
    To determine the number of generator of G evidently,
    \(G=\left\{a, a^{2}, a^{3}, \ldots \ldots ., a^{28}=e\right\}\)
    An element \(a^{m} G\) is also a generator of \(G\) is H.C.F of \(m\) and 28 is 1
    H.C.F of \((1,28)\) is 1 silimarly, \((3,28)(5,28),(9,28)(11,28),(13,28),(15,28),(17,28),(19,28),(23,28),(25,28),(27,28)\)
    Hence \(a, a^{3}, a^{5}, a^{9}, a^{11}, a^{13}, a^{15}, a^{17}, a^{19}, a^{23}, a^{25}, a^{27}\) are the generators of \(G\)
    Therefore, there are 12 generators of \(G\)
  • Question 8
    4 / -1

    The argument of the complex number \(\frac{1-\mathrm{i}}{1+\mathrm{i}},\) where \(\mathrm{i}=\sqrt{-1},\) is

    Solution

    Let, \(z=\frac{1-\mathrm{i}}{1+\mathrm{i}}\)

    or \(\mathrm{z}=\frac{1-\mathrm{i}}{1+\mathrm{i}} \times \frac{1-\mathrm{i}}{1-\mathrm{i}}=\frac{1+\mathrm{i}^{2}-2 \mathrm{i}}{1-\mathrm{i}^{2}}\)

    ⇒ z = -\(\frac{2i}{2}\) = -i

    x + iy = -i

    so, x = 0 and y = -1

    We know that, \(\operatorname{Arg}(z)=\tan ^{-1}\left(\frac{y}{x}\right)\)

    \(\operatorname{Arg}(z)=\tan ^{-1}\left(\frac{-1}{0}\right)=-\tan ^{-1}\left(\frac{1}{0}\right)\)

    \(\operatorname{Arg}(z)=-\tan ^{-1}(\infty)=-\frac{\pi}{2}\)

  • Question 9
    4 / -1

    The parametric equation of the parabola \({y}^{2}=4 ax\) is:

    Solution

    Equation of parabola is \({y}^{2}=4 {ax}\).

    The given equation is in \(x y-\)plane.

    It is a Parabola with the horizontal axis of symmetry and vertex in the origin.

    The value of \(x\) and \(y\) are the coordinates in the \(xy\) plane.

    The parabola gives a direct relation between \(x\) and \(y\).

    Each and every point of the parabola must satisfy this relation.

    Also, parametric equations represent each point of the parabola as a function of parameter 't'.

    A parametric representation is:

    \({x}={at}^{2}\)

    \({y}=2.at\)

    For every value of \(t \in R\) parametric equation yield a point \(p(t)=\left(a t^{2}, 2 a t\right)\) on the parabola.

  • Question 10
    4 / -1

    If \((a+\sqrt{2} b \cos x)(a-\sqrt{2} b \cos y)=a^{2}-b^{2}\), where \(a>b>0\), then \(\frac{d x}{d y}\) at \(\left(\frac{\pi}{4}, \frac{\pi}{4}\right)\) is:

    Solution

    Given,

    \((a+\sqrt{2} b \cos x)(a-\sqrt{2} b \cos y)=a^{2}-b^{2}\)

    As we know,

    \(\frac{d}{dx} \sin x = \cos x\)

    \(\frac{d}{dx} \cos x = -\sin x\)

    Differentiation of a constant is always \(0\).

    Differentiating both sides with respect to \(x\), we get

    \(\Rightarrow(-\sqrt{2} b \sin x)(a-\sqrt{2} b \cos y)+(a+\sqrt{2} b \cos x)(\sqrt{2} b \sin y) \frac{d y}{d x}=0\)

    \(\Rightarrow \frac{d y}{d x}=\frac{(\sqrt{2} b \sin x)(a-\sqrt{2} b \cos y)}{(a+\sqrt{2} b \cos x)(\sqrt{2} b \sin y)}\)

    \(\therefore\left[\frac{d y}{d x}\right]_{\left(\frac{\pi}{4}, \frac{\pi}{4}\right)}=\frac{\left(\sqrt{2} b \sin \frac{\pi}{4}\right)\left(a-\sqrt{2} b \cos \frac{\pi}{4}\right)}{\left(a+\sqrt{2} b \cos \frac{\pi}{4}\right)\left(\sqrt{2} b \sin \frac{\pi}{4}\right)}\)

    As we know,

    \(\cos \frac{\pi}{4} =\sin \frac{\pi}{4} = \frac{1}{\sqrt 2}\)

    \(\Rightarrow\left[\frac{d y}{d x}\right]_{\left(\frac{\pi}{4}, \frac{\pi}{4}\right)}=\frac{a-b}{a+b}\)

    \(\Rightarrow\left[\frac{d x}{d y}\right]_{\left(\frac{\pi}{4}, \frac{\pi}{4}\right)}=\frac{a+b}{a-b}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now