Given,
\((2 x)^{2 y}=4 e^{2 x-2 y}\)
As we know,
\(\log _{b}\left(M^{p}\right)=p \log _{b}(M)\)
\(\log _{b}(M N)=\log _{b}(M)+\log _{b}(N)\)
Taking \(log\) both sides, we get
\(\ln (2 x)^{2 y}= \ln 4 e^{2 x-2 y}\)
\( \Rightarrow\ln (2 x)^{2 y}=\ln 4+\ln (2 x-2 y)\)
\(\Rightarrow2 y \ln (2 x)=\ln 2^2+(2 x-2 y)\)
\(\Rightarrow 2 y \ln (2 x)=2 \ln 2+(2 x-2 y)...(1)\)
\(\Rightarrow y \ln (2 x)=\ln 2+(x-y)\)
\(\Rightarrow y(1+\ln 2 x)=x+\ln 2\)
\(\therefore y=\frac{x+\ln 2}{1+\ln (2 x)}....(2)\)
As we know,
\(\frac{d}{d x}\left(\ln x\right)=\frac{1}{x }\)
If \(f\) and \(g\) are both differentiable, then
\(\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}[f(x)]\)
Differentiating equation \((1)\) with respect to \(x\), we get
\(2 y \times \frac{1}{2 x} \times 2+2 \ln (2 x) \frac{d y}{d x}=0+2-2 \frac{d y}{d x}\)
\(\Rightarrow 2[1+\ln (2 x)] \frac{d y}{d x}=2-\frac{2 y}{x}\)
\(\Rightarrow[1+\ln (2 x)] \frac{d y}{d x}=1-\frac{y}{x}....(3)\)
Put equation \((2)\) in equation \((3)\), we get
\(\Rightarrow[1+\ln (2 x)] \frac{d y}{d x}=1-\frac{\frac{x+\ln 2}{1+\ln (2 x)}}{x}\)
\(\Rightarrow[1+\ln (2 x)] \frac{d y}{d x}=1-\frac{1}{x}\left(\frac{x+\ln 2}{1+\ln 2 x}\right)\)
\(\Rightarrow[1+\ln (2 x)]^{2} \frac{d y}{d x}=\frac{x+x \ln (2 x)-x-\ln 2}{x}\)
\(\Rightarrow[1+\ln (2 x)]^{2} \frac{d y}{d x}=\frac{x \ln (2 x)-\ln 2}{x}\)
\(\Rightarrow[1+\log_e (2 x)]^{2} \frac{d y}{d x}=\frac{x \log_e (2 x)-\log_e 2}{x}\)