Self Studies

Mathematics Test - 9

Result Self Studies

Mathematics Test - 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If \(x^{m+1} y^{n+1}=c^{m+n+2}\), then what is \(\frac{d y}{d x}\) equal to:

    Solution

    Given,

    \(x^{m+1} y^{n+1}=c^{m+n+2}\)

    As we know,

    If \(f\) and \(g\) are both differentiable, then

    \(\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)\)

    Differentiation of a constant is always \(0\).

    \(\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\)

    Differentiating with respect to \(x\), we get

    \(\Rightarrow \frac{d}{d x}\left(x^{m+1} y^{n+1}\right)=\frac{d}{d x}\left(c^{m+n+2}\right)\)

    \(\Rightarrow x^{m+1} \frac{d}{d x} y^{n+1}+y^{n+1} \frac{d}{d x} x^{m+1}=\frac{d}{d x} c^{m+n+2}\)

    \(\Rightarrow x^{m+1}(n+1) y^{n} \frac{d y}{d x}+y^{n+1}(m+1) x^{m}=0\)

    \(\Rightarrow x^{m+1}(n+1) y^{n} \frac{d y}{d x}=-y^{n+1}(m+1) x^{m}\)

    \(\Rightarrow \frac{d y}{d x}=-\frac{y^{n+1}(m+1) x^{m}}{x^{m+1}(n+1) y^{n}}\)

    \(\Rightarrow \frac{d y}{d x}=-\frac{y^{n+1} y^{-n}(m+1)}{x^{m+1} x^{-m }(n+1)}\)

    \(\Rightarrow \frac{d y}{d x}=-\frac{y^{n+1-n}(m+1)}{x^{m+1-m}(n+1)}\)

    \(\Rightarrow \frac{d y}{d x}=-\frac{(m+1) y}{(n+1) x}\)

  • Question 2
    4 / -1

    Find the distance between the straight line x - 2 = y = z + 1 and the plane x + y - 2z + 3 = 0?

    Solution

    First, let's find out if the given line is parallel to the plane or not.

    As we can see that, the direction ratios of the given line are: (1, 1, 1)

    Similarly, the direction ratios of the normal to the given plane are: (1, 1, - 2)

    ⇒ 1 × 1 + 1 × 1 + (- 2) × 1 = 0

    So, the given line is parallel to the given plane.

    Let's find out a point on the given line

    As we can see that, point Q (2, 0, - 1) lies on the line

    So, finding the distance between the point Q and the given plane is same as finding the distance between the given line and plane.

    As we know that, distance between a point and a plane is given by:\(\left|\frac{A x_{1}+B y_{1}+C z_{1}-d}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|\)

    Here, x1 = 2, y1 = 0 and z1 = - 1

    \(\Rightarrow d=\left|\frac{1 \cdot 2+1 \cdot 0-2 \cdot(-1)+3}{\sqrt{1^{2}+1^{2}+(-2)^{2}}}\right|=\frac{7 \sqrt{6}}{6}\) units

  • Question 3
    4 / -1
    The function \(f(x)=\sqrt{\cos (\sin x)}+\sin ^{-1}\left(\frac{1+x^{2}}{2 x}\right)\) is defined for:
    Solution
    Given function is \(\sqrt{\cos (\sin x)}+\sin ^{-1}\left(\frac{1+x^{2}}{2 x}\right)\)
    Range of \(\sin x\) is \([-1,1] .\) so, \(\cos (-{ve})\) also positive value.
    \(\Rightarrow\) Defined for all real number .....(1)
    \(\sin ^{-1}(x)\) is defined for \(-1 \leq x \leq 1\)
    \(-1 \leq \frac{1+x^{2}}{2 x} \leq 1\)
    Case (1) \(x^{2}+1 \geq-2 x\)
    \((x+1)^{2} \geq 0\)
    Always positive and this is equal to zero when \(x=-1\)
    case (2) \(1+x^{2} \leq 2 x\)
    \((x-1)^{2} \leq 0\)
    This is equal to zero when \({x}=1\)
    The function domain will be inter section of \((1)\) and \((2)\) function
    For function (2) \(x \in\{-1,1\}\)
    The final answer for this is \({x} \in\{-1,1\}\)
  • Question 4
    4 / -1
    Let \(\Delta=\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right|\), the \(\Delta\) lies in the interval:
    Solution
    Given,
    \(\Delta=\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right|\)
    \(\Delta=1\left(1+\sin ^{2} \theta\right)-\sin \theta(-\sin \theta+\sin \theta)+1\left(\sin ^{2} \theta+1\right)\)
    \(\Delta=2+2 \sin ^{2} \theta\)
    For \(\theta=0^{\circ}\),
    \(\Delta=2+2 \sin \theta=2+0=2\)
    For \(\theta=\frac{\pi}{2}\)
    \(\Delta=2+2 \sin ^{2} \frac{\pi}{2}=2+2 \times 1=4\)
    Thus, \(\Delta\) lies in the interval \([2,4]\).
  • Question 5
    4 / -1

    If \({ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}=2760,{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=23\), then the value of \(\mathrm{r}\) is

    Solution

    Given: \({ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}=2760,{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=23\)

    To find: \(\mathrm{r}=\) ?

    We know, \({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{{ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}}{\mathrm{r} !}\)

    \(\Rightarrow 23=\frac{2760}{\mathrm{r} !}\)

    \(\Rightarrow \mathrm{r} !=\frac{2760}{23}=120\)

    \(\Rightarrow \mathrm{r} !=5 \times 24=5 \times 4 \times 6\)

    \(=5 \times 4 \times 3 \times 2 \times 1\)

    \(\therefore \mathrm{r}=5\)

  • Question 6
    4 / -1

    The distance of the point (2,3,5) from the line \(\frac{\mathrm{x}+2}{-3}=\frac{\mathrm{y}-2}{4}=\frac{\mathrm{z}+2}{1}\) is

    Solution

    The eqution of line is given as, \(\frac{x+2}{-3}=\frac{y-2}{4}=\frac{z+2}{1}=\lambda\)

    The coordinate of point B on the given line are,

    B (-3λ- 2, 4λ+ 2, λ -2)

    and the given coordinate of point A  is  ( 2, 3, 7). 

    \(\overrightarrow{\mathrm{AB}}=(-3 \lambda-4) \hat{\mathrm{i}}+(4 \lambda-1) \hat{\mathrm{j}}+(\lambda+5) \hat{\mathrm{k}}\)

    \(\mathrm{AB}\) is perpendicular to the line, \(\frac{\mathrm{x}+2}{-3}=\frac{\mathrm{y}-2}{4}=\frac{\mathrm{z}+2}{1},\)

    We know that, If two lines are Perpendicular, then  a1a2+b1b2+c1c2 = 0,

    ⇒ (-3λ- 4 ) × (-3) + (4λ-1 )× 4 + (λ + 5 )× 1 = 0

    ⇒ 26λ + 13 = 0

    \(\Rightarrow \lambda=-\frac{1}{2}\)

    \(\overrightarrow{\mathrm{AB}}=-\frac{5}{2} \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\frac{9}{2} \hat{\mathrm{k}}\)

    \(\therefore|\overrightarrow{\mathrm{AB}}|=\sqrt{\left(\frac{5}{2}\right)^{2}+3^{2}+\left(\frac{9}{2}\right)^{2}}\)

    \(\Rightarrow|\overrightarrow{\mathrm{AB}}|=\sqrt{\frac{71}{2}}\)

  • Question 7
    4 / -1
    If the group \((z, *)\) of all integers, where \(a * b=a+b+1\) for all \(a, b \in z\), the inverse of \(-2\) is:
    Solution

    Given: \(a * b=a+b+1\)

    \(a * b=a+b+1\)

    The identity element of \({b}\) for any element \({a}, {b} \in {z}\)

    \(a * b=a\)

    \(a+b+1=a\)

    \(b=-1\)

    Therefore identity element is \(-1\)

    Therefore \({e}=-1\)

    now for a inverse,

    \(a * a^{-1}=a+a^{-1}+1=e\)

    \(a+a^{-1}+1=-1\)

    \(a^{-1}=-2-a\)

    When \({a}=-2, {a}^{-1}=0\)

  • Question 8
    4 / -1

    If the focus of a parabola is \((-8,-2)\) and the directrix is \(y=2 x-9\), then the equation of the parabola is:

    Solution

    If \(S=\left(x_{1}, y_{1}\right)\) is the focus of parabola and \(P(x, y)\) is any point on parabola and directrix is given as \(a x+b y+c=\) 0 then equation of parabola is:

    \(\mathrm{SP}=\) Distance of "p" from directrix.

    For \(P(x, y)\) and line \(a x+b y+c=0\) the distance is:

    \(D=\frac{a x+b y+c}{\sqrt{a^{2}+b^{2}}}\)

    Consider the parabola as shown:

    Given focus is \((-8,-2)\) and directrix \(y=2 x-9\).

    \(\sqrt{(x+8)^{2}+(y+2)^{2}}=\frac{2 x-y-9}{\sqrt{(2)^{2}+(-1)^{2}}}\)

    Squaring on both sides

    \(\left[(x+8)^{2}+(y+2)^{2}\right] 5=[2 x-y-9]^{2}\)

    \((2 x-y-9)^{2}=(2 x)^{2}+(-y)^{2}+(-9)^{2}+2(2 x)(-y)+2(-y)(-9)+2(-9)(2 x)\)

    \(=4 x^{2}+y^{2}+81-4 x y+18 y-36 x \quad\quad\ldots .(1)\)

    \(5\left[(x+8)^{2}+(y+2)^{2}\right]=5\left[x^{2}+64+16 x+y^{2}+4+4 y\right]\)

    \(5 x^{2}+80 x+5 y^{2}+20 y+340=4 x^{2}+y^{2}+81-4 x y+18 y-36 x\)

    \(x^{2}+4 y^{2}+4 x y+116 x+2 y+259=0\)

    This is equation of parabola.

  • Question 9
    4 / -1

    If the constraints in a linear programming problem are changed _______________.

    Solution

    If the constraints in a linear programming problem are changed the problem is to be re-evaluated. The linear inequalities or equations or restrictions on the variables of a linear programming problem are called constraints. The conditions x ≥ 0, y ≥ 0 are called non-negative restrictions.

  • Question 10
    4 / -1

    If \(f(x)=\tan ^{-1}\left[\frac{\sin x}{1+\cos x}\right]\), then what is first term derivative of \(f(x)\)?

    Solution

    Given,

    \(f(x)=\tan ^{-1}\left[\frac{\sin x}{1+\cos x}\right]\)

    As we know,

    \(\sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}\)

    \(\cos x = \cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\)

    \(\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}=1\)

    \(\frac{\sin x}{1+\cos x}=\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\left(\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}\right)+\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right)}\)

    \(=\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\)

    \(=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\)

    \(=\tan \frac{x}{2}\)

    \(\therefore f(x)=\tan ^{-1}\left[\frac{\sin x}{1+\cos x}\right]\)

    \(=\tan ^{-1}\left(\tan \frac{x}{2}\right)=\frac{x}{2}\)

    Forfirst term derivative, we have to put \(x=1\).

    The first derivative of \(f(x) = \frac{1}{2}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now