Given:
The angle of the prism \(A=60^{\circ}\)
The refractive index of the prism \((\mu)=1.5\)
\(\sin^{-1} 0.75=48^{\circ}\)
The Refractive index \((\mu)\) of a prism for minimum deviation \(\left(\delta_{m}\right)\):
\(\mu=\frac{\sin \left(\frac{A+\delta m}{2}\right)}{\sin \frac{A}{2}}\)
Where, \(A=\) angle of the prism
The relation between the angle of the prism \(A\) and incident angle \((i)\):
\(i=\frac{\left(A+\delta_{m}\right)}{2}\)
From the formula of refractive index,
\(1.5=\frac{\sin \left(\frac{60^{\circ}+\delta_{m}}{2}\right)}{\sin \left(\frac{60^{\circ}}{2}\right)}\)
\(1.5×\sin 30^{\circ}= \sin \left(\frac{60^{\circ}+\delta_{m}}{2}\right)\)
\(1.5×\frac{1}{2}= \sin \left(\frac{60^{\circ}+\delta_{m}}{2}\right)\)
\(0.75= \sin \left(\frac{60^{\circ}+\delta_{m}}{2}\right)\)
\(\sin^{-1}0.75= \frac{60^{\circ}+\delta_{m}}{2}\)
\(48^{\circ}= \frac{60^{\circ}+\delta_{m}}{2}\)
\(\delta_{m}=96^{\circ}-60^{\circ}\)
\(\delta_{m}=36^{\circ}\)
Angle of incidence \((i)\)
\(i=\frac{(60+36)}{2}\)
\(i=48^{\circ}\)
So, the angle of deviation and angle of incidence is \(36^{\circ}\) and \(48^{\circ}\) respectively.