Self Studies
Selfstudy
Selfstudy

Mathematics Test 155

Result Self Studies

Mathematics Test 155
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    In acute angled triangle ΔABC, there is an interior point P such that ∠PAB = 10°, ∠PBA = 20°, ∠PCA = 30°, ∠PAC = 40°, then ∠ACB = x°, then x is :

    Solution

     

  • Question 2
    4 / -1

    If 0 ≤ x ≤ 5π, then equation (3 + cos x)2 = 4 – 2 sin8x has

    Solution

    4 ≤ LHS ≤ 16

    2 ≤ RHS ≤ 4

    Hence equality can occur at 4, which is possible if x = π, 3π, 5π ⇒ 3 solutions

     

  • Question 3
    4 / -1

    Let  (where [x] denotes greatest integer less than or equal to x). If A and B denotes the domain and range of f(x) respectively, then the number of integers in (A ∪ B) is m, then the value of sin–1(cos 2) – cos–1(sin 2) + tan–1(cot 4) – cot–1(tan 4) + sec–1(cosec 6) – cosec–1(sec 6) is :

    Solution

     

  • Question 4
    4 / -1

    Consider two lines L1 and L2 given by 3x + 4y – 7 = 0 and 4x – 3y – 1 = 0 respectively and a variable point P. Let d(P, Li), i = 1, 2 represents the perpendicular distance of point P from the line Li. If point P moves in a certain region R in such a way that 6 ≤ 2d(P, L1) + 3d(P, L2) ≤ 12, then the area of the region R :

    Solution

     

  • Question 5
    4 / -1

    If two distinct chords, drawn from the point (p, q) on the circle x2 + y2 = px + qy, where p, q ≠ 0, are bisected by the x-axis, then which of the following is correct :

    Solution

    Let (α, 0) be the midpoints of the chord. The other end of the chord is (2α – p, –q) which lies on the circle :

    ⇒ (2α – p)2 + q2 = p(2α – p) – q2

    ⇒ 2α2 – 3pα + p2 + q2 = 0

    For two values of α, we have

    9p2 > 8(p2 + q2) or p2 > 8q2

     

  • Question 6
    4 / -1

    If the line x + 2y = k is normal to the parabola x2 – 4x – 8y + 12 = 0 then the value of k is :

    Solution

     

  • Question 7
    4 / -1

    If a tangent to ellipse x2 + 4y2 = 4, meet the ellipse x2 + 2y2 = 6 at points P & Q, then angle between tangents at P and Q is :

    Solution

     

  • Question 8
    4 / -1

    A circle cuts two fixed perpendicular lines such that each of the non zero intercepts is of given length (but unequal). The eccentricity of locus of the centre of the circle is :

    Solution

    Let the perpendicular lines be co-ordinate axes

    ∴ f2 – c = k1 & g2 – c = k2

    ⇒ f2 – g2 = k1 – k2  ∴ x2 – y2 = k

    ∴ e = √2

     

  • Question 9
    4 / -1

    If α is an imaginary fifth root of unity then the value of 

    Solution

     

  • Question 10
    4 / -1

    Let f(x) = x2 + px + q and g(x) = x2 + rx + s where real roots of f(x) = 0 are α, β and real roots of g(x) = 0 are α + δ, β + δ such that minimum value of f(x) be  and least value of g(x) occurs at x = 7/2, then correct option is –

    Solution

     

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now