As we know,
The scalar triple product of three vectors is zero if any two of them are equal
If \(\vec{a}\) is perpendicular to the vectors \(\vec{b}\) then \(\vec{a} \cdot \vec{b}=0\)
Given: \(\vec{c}=\vec{a}+\vec{b}\), where \(|\vec{a}|=|\vec{b}| \neq 0\)
Statement 1: \(\vec{c}\) is perpendicular to \((\vec{a}-\vec{b})\).
First let's find out \(\vec{c} \cdot(\vec{a}-\vec{b})=(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})\)
\(\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}|^{2}-\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}-|\vec{b}|^{2}\)
As we know that, \(\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\)
\(\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}|^{2}-|\vec{b}|^{2}\)
\(\because\) It is given that \(|\vec{a}|=|\vec{b}| \neq 0\)
\(\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}|^{2}-|\vec{b}|^{2}=0 \)
\(\Rightarrow \vec{c} \cdot(\vec{a}-\vec{b})=0\)
So, statement 1 is true.
Statement 2: \(\vec{c}\) is perpendicular to \(\vec{a} \times \vec{b}\).
First let's find out \(\vec{c} \cdot(\vec{a} \times \vec{b})=(\vec{a}+\vec{b}) \cdot(\vec{a} \times \vec{b})\)
\(\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a} \times \vec{b})=\vec{a} \cdot(\vec{a} \times \vec{b})+\vec{b} \cdot(\vec{a} \times \vec{b})\)
As we know that, the scalar triple product of three vectors is zero if any two of them are equal \(\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a} \times \vec{b})=0\)
So, statement 2 is true.