Self Studies

Mathematics Test - 13

Result Self Studies

Mathematics Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For any vector \(\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{i}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{i}})+\overrightarrow{\mathrm{j}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{j}})+\overrightarrow{\mathrm{k}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{k}})\) is:
    Solution

    Using the definition of triple cross product:

    \(\overrightarrow{\mathrm{i}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{i}})=(\overrightarrow{\mathrm{i}} \cdot \overrightarrow{\mathrm{i}}) \overrightarrow{\mathrm{a}}-(\overrightarrow{\mathrm{i}} \cdot \overrightarrow{\mathrm{a}}) \overrightarrow{\mathrm{i}}=\overrightarrow{\mathrm{a}}-\mathrm{a} \overrightarrow{\mathrm{i}}\)

    \(\overrightarrow{\mathrm{j}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{j}})=(\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{j}}) \overrightarrow{\mathrm{a}}-(\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{a}}) \overrightarrow{\mathrm{j}}=\overrightarrow{\mathrm{a}}-\mathrm{a} \overrightarrow{\mathrm{j}}\)

    \(\overrightarrow{\mathrm{k}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{k}})=(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{k}}) \overrightarrow{\mathrm{a}}-(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{a}}) \overrightarrow{\mathrm{k}}=\overrightarrow{\mathrm{a}}-\mathrm{ak}\)

    \(\therefore \overrightarrow{\mathrm{i}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{i}})+\overrightarrow{\mathrm{j}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{j}})+\overrightarrow{\mathrm{k}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{k}})\)

    \(=(\vec{a}-a \vec{i})+(\vec{a}-a \vec{j})+(\vec{a}-a \vec{k})\)

    \(=3 \overrightarrow{\mathrm{a}}-(\mathrm{a} \overrightarrow{\mathrm{i}}+\mathrm{a} \overrightarrow{\mathrm{j}}+\mathrm{a} \overrightarrow{\mathrm{k}})\)

    \(=3 \vec{a}-\vec{a}\)

    \(=2 \overrightarrow{\mathrm{a}}\)

  • Question 2
    1 / -0

    Find the vector equation of the line that passes through the points \(A(1,0,2)\) and \(B(3,9,6)\).

    Solution

    Let, \(\vec{a}\) and \(\vec{b}\) be the position vector of the points \(A\) and \(B\) respectively, then vector equation of line passing through \(A\) and \(B\) is given by: 

    \(\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})\)

    Given here: 

    The required line passes through the points \(A (1,0,2)\) and \(B (3,9,6)\).

    So, the position vector of the points \(A(1,0,2)\) and \(B(3,9,6)\) are \(\vec{a}=\hat{i}+2 \hat{k}\) and \(\vec{b}=3 \hat{i}+9 \hat{j}+6 \hat{k}\) respectively.

    \(\therefore\) The vector equation of the required line is:

    \(\vec{r}=\hat{i}+2\hat{k}+\lambda(2 \hat{i}+9 \hat{j}+4 \hat{k})\)

  • Question 3
    1 / -0

    \(\frac{\sin 7 x+6 \sin 5 x+17 \sin 3 x+12 \sin x}{\sin 6 x+5 \sin 4 x+12 \sin 2 x}\) equals:

    Solution

    Given,

    \(\frac{\sin 7 x+6 \sin 5 x+17 \sin 3 x+12 \sin x}{\sin 6 x+5 \sin 4 x+12 \sin 2 x}\)

    \(=\frac{\sin 7 \mathrm{x}+\sin 5 \mathrm{x}+5 \sin 5 \mathrm{x}+5 \sin 3 \mathrm{x}+12 \sin 3 \mathrm{x}+12 \sin \mathrm{x}}{\sin 6 \mathrm{x}+5 \sin 4 \mathrm{x}+12 \sin 2 \mathrm{x}}\)

    By using, \(\sin x+\sin y=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)\)

    Therefore,

    \(=\frac{(2 \sin(\frac{7x+5x}{2}) \cos (\frac{7x-5x}{2})+5×(2\sin(\frac{5x+3x}{2})\cos (\frac{5x-3x}{2}))+12×(2\sin(\frac{3x+x}{2}) \cos(\frac{3x-x}{2}))}{(\sin 6 x+5 \sin 4 x+12 \sin 2 x)}\)

    \(=\frac{2 \sin 6 x \cos x+10 \sin 4 x \cos x+24 \sin 2 x \cos x}{(\sin 6 x+5 \sin 4 x+12 \sin 2 x)}\)

    \(=\frac{2 \cos x(\sin 6 x+5 \sin 4 x+12 \sin 2 x)}{(\sin 6 x+5 \sin 4 x+12 \sin 2 x)}\)

    \(=2 \cos x\)

  • Question 4
    1 / -0

    Let \(A=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & -i \\ 0 & 1\end{array}\right]\), where \(i=\sqrt{-1}\). If \(M=A^T B A\), then the inverse of the matrix \(A M^{2023} A^T\) is:

    Solution


  • Question 5
    1 / -0

    Let two vertices of a triangle \(\mathrm{ABC}\) be \((2,4,6)\) and \((0,-2,-5)\), and its centroid be \((2,1,-1)\). If the image of the third vertex in the plane \(x+2 y+4 z=11\) is \((\alpha, \beta, \gamma)\), then \(\alpha \beta+\beta \gamma+\gamma \alpha\) is equal to :

    Solution

    Given Two vertices of Triangle \(A(2,4,6)\) and \(B(0,-2,-5)\) and if centroid \(\mathrm{G}(2,1,-1)\)

    Let Third vertices be ( \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) )

    Now \(\frac{2+0+x}{3}=2, \frac{4-2+y}{3}=1, \frac{6-5+z}{3}=-1\)

    \(\mathrm{x}=4, \mathrm{y}=1, \quad \mathrm{z}=-1\)

    Third vertices \(C(4,1,-4)\\)

    Now, Image of vertices \(\mathrm{C}(4,1,-4)\) in the given plane is \(\mathrm{D}(\alpha, \beta, \gamma)\)

    Now

    \(\frac{\alpha-4}{1}=\frac{\beta-1}{2}=\frac{\gamma+4}{4}=-2 \frac{(4+2-16-11)}{1+4+16} \\\)

    \(\frac{\alpha-4}{1}=\frac{\beta-1}{2}=\frac{\gamma+4}{4}=\frac{42}{21} \Rightarrow 2 \\\)

    \( \alpha=6, \beta=5, \gamma=4 \\\)

    \( \text { Then } \alpha \beta+\beta \gamma+\gamma \alpha \\\)

    \( =(6 \times 5)+(5 \times 4)+(4 \times 6) \\\)

    \( =30+20+24 \\\)

    \( =74\)

  • Question 6
    1 / -0

    Let \(p(n)=x\left(x^{n-1}-n \cdot a^{n-1}+a^{n}(n-1)\right)\) is divisible by \((x-a)^{2}\) for:

    Solution

    Given:

    \(p(n)=x\left(x^{n-1}-n \cdot a^{n-1}+a^{n}(n-1)\right)\) is divisible by \((x-a)^{2}\)

    For n = 1.

    \(p(1)=x\left(x^{1-1}-1 \cdot a^{1-1}+a^{1}(1-1)\right)\)

    \(\mathrm{p}(1)=\mathrm{0}\)

    It is not divisible by \((x-a)^{2}\).

    \(\mathrm{p}(2)=\mathrm{x}\left(\mathrm{x}-2 \mathrm{a}+\mathrm{a}^{2}\right) \)

    \(=\mathrm{x}^{2}-2 \mathrm{ax}+\mathrm{a}^{2} \mathrm{x} \)

    \(=(\mathrm{x}-\mathrm{a})^{2}-\mathrm{a}^{2}+\mathrm{a}^{2}(\mathrm{x}) \)

    \(=(\mathrm{x}-\mathrm{a})^{2}+\mathrm{a}^{2}(\mathrm{x}-1)\)

    \(p(2)\) is also not divisible by \((x-a)^{2}\)

    \(\{1,2\}\) falls in the set of first n natural numbers.

  • Question 7
    1 / -0

    If \(A=\left[\begin{array}{cc}4 & x+2 \\ 2 x-3 & x+1\end{array}\right]\) is symmetric, then what is \(x\) equal to:

    Solution

    \(A=\left[\begin{array}{cc}4 & x+2 \\ 2 x-3 & x+1\end{array}\right]\)

    Given \(A^T=A\)

    \(\Rightarrow\left[\begin{array}{cc}4 & 2 x-3 \\ x+2 & x+1\end{array}\right]=\left[\begin{array}{cc}4 & x+2 \\ 2 x-3 & x+1\end{array}\right]\)

    Both are equal if corresponding elements are equal,

    \(\Rightarrow 2 x-3=x+2\)

    \(\Rightarrow 2 x-x=3+2\)

    \(\Rightarrow x=5\)

  • Question 8
    1 / -0

    If \(f(x)=\frac{\sin \left(e^{x-2}-1\right)}{\log (x-1)}, x \neq 2\) and \(f(x)=k\).Then, the value of k for which f will be continuous at x = 2 is:

    Solution

    Given:

    \(\lim _{x \rightarrow 2} \frac{\sin \left(e^{x-2}-1\right)}{\log (x-1)}\) .....(1)

    We know that:

    \(\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=l=\lim _{x \rightarrow a} f(x)\)

    On substituting, \(\mathrm{h}=\mathrm{x}-2\) in (1), we get:

    \(=\lim _{h \rightarrow 0} \frac{\sin \left(e^{h}-1\right)}{\log (1+h)}\)

    This can be rearranged as:

    \(=\lim _{h \rightarrow 0} \frac{\sin \left(e^{h}-1\right)}{e^{h}-1} \cdot \frac{e^{h}-1}{h} \cdot \frac{h}{\log (1+h)}\)

    \(=1 \cdot 1 \cdot 1\)

    \(=1\)

    And, \(f(2)=k\)

    ∴ For the function to be continuous the value of the function f(x) at x = 2 must equal the limiting value of 1, i.e., k = 1

  • Question 9
    1 / -0
    If \(f(x)=\frac{3 x+\tan ^{2} x}{x}\) is continuous at \(x=0\), then \(f(0)\) is equal to:
    Solution

    Now, \(\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{3 x+\tan ^{2} x}{x}\left(\frac{0}{0}\right.\) form \()\)

    \(=\lim _{x \rightarrow 0} \frac{3+2 \tan x \sec ^{2} x}{1}=3\)

    Since, \(\mathrm{f}(\mathrm{x})\) is continuous at \(\mathrm{x}=0\)

    \(\therefore \mathrm{f}(0)=3\)

  • Question 10
    1 / -0

    If the planes \(2 x-y-3 z-7=0\) and \(4 x-2 y+5 k z+9=0\) are parallel, then \(5 k+7\) is:

    Solution

    Given,

    The planes \(2 x-y-3 z-7=0\) and \(4 x-2 y+5 k z+9=0\) are parallel

    We know that,

    If plane \(a_{1} x+b_{1} y+c_{1} z+d_{1}=0\) and

    \(a_{2} x+b_{2} y+c_{2} z+d_{2}=0\) are a parallel i.e.,

    \(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \neq \frac{d_{1}}{d_{2}}\)

    Now,

    If plane are parallel than ratio of coefficient of \(x, y\) and \(z\) are equal.

    \(\frac{2}{4}=\frac{-1}{-2}=\frac{-3}{5 k}\)

    \(\Rightarrow \frac{1}{2}=\frac{-3}{5 k}\)

    \(\Rightarrow 5 k=-6\)

    So, \(k=\frac{-6}{5}\)

    Now,

    \(5 k+7\)

    \(=5 \times\left(\frac{-6}{5}\right)+7\)

    \(=(-6)+7\)

    \(=1\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now