Given,
Decay constant of \(A, \lambda_{A}=10 \lambda\)
Decay constant of \(B, \lambda_{B}=\lambda\)
Initially, Nuclei of \(A=\) Nuclei of \(B\)
After \(t\) time ratio of their nuclei is, \(\frac{N_{A}}{N_{B}}=\frac{1}{e}\)
The decay constant \(\lambda\) represents the average probability per nucleus of decay occurring per unit time. The rate of radioactive decay is proportional to the number of each type of radioactive nuclei present in a given sample.
According to the radioactive decay formula,
\(N=N_{0} e^{-\lambda t}\)
Where \(N_{0}\) be the initial number of nuclei in both \(A\) and \(B\)
For a radioactive material \(A , N _{ A }= N _{0} e ^{-\lambda_{A} t }\)
Where \(N_{A}\) be the number of nuclei in \(A\)
For a radioactive material \(B , N _{ B }= N _{0} e ^{-\lambda_{B} t }\)
Where \(N_{B}\) be the number of nuclei in \(B\).
Thus, their ratio will be
\(\frac{ N _{ A }}{ N _{ B }}=\frac{ N _{0} e^{-\lambda_{A} t }}{ N _{0} e ^{-\lambda_{B} t }}\)
\(\frac{ N _{ A }}{ N _{ B }}= e ^{-\lambda_{A} t {+\lambda_{B} t }}\)
\(\frac{ N _{ A }}{ N _{ B }}= e ^{\left(\lambda_{ B }-\lambda_{ A }\right) t}\)
\(\frac{1}{ e }= e ^{\left(\lambda_{ B }-\lambda_{ A }\right) t}\)
\(e^{-1}= e ^{\left(\lambda_{ B }-\lambda_{ A }\right) t}\)
\(\left(\lambda_{ B }-\lambda_{ A }\right) t =-1\)
\(\left(\lambda_{ A }-\lambda_{ B }\right) \times t =1\)
\(t =\frac{1}{\left(\lambda_{ A }-\lambda_{ B }\right)}\)
\(t=\frac{1}{10 \lambda-\lambda}=\frac{1}{9 \lambda}\)
Thus, the ratio of the number of nuclei of \(A\) to that of \(B\) will be \(1 / e\) after a time \(\frac{1}{9 \lambda}\)