Self Studies

Mathematics Test-1

Result Self Studies

Mathematics Test-1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    In the given figure, O is the centre of the circle. The length of chord BC is:

    Solution

    If the angle of the base radius is the same then the corresponding length of sides will be the same.

    AB = 4 cm

    Therefore, BC = 4 cm

  • Question 2
    4 / -1

    In a quadrilateral \(PQRS , \overrightarrow{ PQ }=\overrightarrow{ a }, \overrightarrow{ QR }=\overrightarrow{ b }, \overrightarrow{ SP }=\overrightarrow{ a }-\overrightarrow{ b }\). \(M\) is the mid-point of \(QR\) and \(X\) is a point on \(SM\) such that \(SX =\frac{4}{5} SM\), then \(\overrightarrow{ PX }\) is:

    Solution

    Choose \(P\) as the origin of the reference.

    \(\overrightarrow{ PR }=\vec{a}+\vec{b}\)

    \(\overrightarrow{ PS }=-(\vec{a}-\vec{b})=\vec{b}-\vec{a}\)

    \(\overrightarrow{ PM }=\overrightarrow{ a }+\frac{\overrightarrow{ b }}{2}\)

    Given:\(\overrightarrow{ SX } =\frac{4}{5}\overrightarrow{ SM }\)

    \(\overrightarrow{ PX }-(\overrightarrow{ b }-\overrightarrow{ a })=\frac{4}{5}\left\{\overrightarrow{ a }+\frac{\overrightarrow{ b }}{2}-(\overrightarrow{ b }-\overrightarrow{ a })\right\}\)

    \(\overrightarrow{ PX }=\frac{3}{5}\overrightarrow{ a }-(-\frac{6}{10}\overrightarrow{ b })\)

    \(\Rightarrow \overrightarrow{ PX } =\frac{3}{5}(\overrightarrow{ a }+\overrightarrow{ b })\)

    \(=\frac{3}{5} \overrightarrow{ PR }\)

  • Question 3
    4 / -1

    \(\left[\begin{array}{ll}1 & 6 \\ 7 & 2\end{array}\right]= P + Q\), where \(P\) is a symmetric & \(Q\) is a skew-symmetric, then \(P =?\)

    Solution

    Any square matrix can be expressed as sum of symmetric and skew symmetric as.

    \(A=\frac{1}{2}\left(A+A^T\right)+\frac{1}{2}\left(A-A^T\right)\)

    Where the first term is symmetric and second term is skew-symmetric here \(S = P + Q\)

    To find \(P\) i.e. the symmetric term is given by,

    \(P=\frac{1}{2}\left(S+S^{ T }\right)\)

    \(P=\frac{1}{2}\left(\left[\begin{array}{ll}1 & 6 \\ 7 & 2\end{array}\right]+\left[\begin{array}{ll}1 & 7 \\ 6 & 2\end{array}\right]\right)\)

    \(P=\frac{1}{2}\left[\begin{array}{cc}2 & 13 \\ 13 & 4\end{array}\right]\)

    \(P=\left[\begin{array}{cc}1 & \frac{13}{2} \\ \frac{13}{2} & 2\end{array}\right]\)

  • Question 4
    4 / -1

    The least value of \(n\) for which \(\left \{\frac{(1+i)}{(1-i)}\right\}^{n}\) is real, is:

    Solution

    Given, \(\left \{\frac{(1+i)}{(1-i)}\right\}^{n}\)

    \(=\left \{\frac{(1+i) \times(1+i)}{(1-i) \times(1+i)}\right\}^{n}\)

    \(=\left[\frac{\left\{(1+i)^{2}\right\}}{\left\{\left(1-i^{2}\right)\right\}}\right]^{n}\)

    \(=\left[\frac{\left(1+i^{2}+2 i\right) }{\{1-(-1)\}}\right]^{n}\)

    \(=\left[\frac{\left\{1-1+2 i\right\}}{\left\{1+1\right\}}\right]^{n}\)

    \(=\left[\frac{2 i}{ 2}\right]^{ n }\)

    \(= i ^{ n }\)

    Now, in is real when \(n =2\) [since \(i^ 2=-1\)]

    So, the least value of \(n\) is \(2\)

  • Question 5
    4 / -1

    The sum of the series 5 + 9 + 13 + … + 49 is:

    Solution

    The given series:

    5 + 9 + 13 + … + 49

    First term, a = 5

    Common difference, d = 4

    The given series is an arithmetic progression.

    Let's say that the last term 49 is the nth term.

    \(\therefore a+(n-1) d=49\)

    \(\Rightarrow 5+4(n-1)=49\)

    \(\Rightarrow 4 n=48\)

    \(\Rightarrow n=12\)

    And, the sum of this AP is:

    \(\mathrm{S}_{12}=\left(\frac{\text { First Term }+\text { Last Term }}{2}\right) \times 12\)

    \(=\left(\frac{5+49}{2}\right) \times 12=54 \times 6=324\)

  • Question 6
    4 / -1

    What is \(\int \frac{d x}{\sec ^{2}\left(\tan ^{-1} x\right)}\) equal to?

    Solution

    Given:

    \(I=\int \frac{d x}{\sec ^{2}\left(\tan ^{-1} x\right)}\)

    As we know, \(\sec ^{2} x-\tan ^{2} x=1\)

    \(I=\int \frac{d x}{1+\tan ^{2}\left(\tan ^{-1} x\right)}\)

    \(\Rightarrow I=\int \frac{d x}{1+\left[\tan \left(\tan ^{-1} x\right)\right]^{2}}\)

    \(\Rightarrow I=\int \frac{d x}{1+x^{2}}\)

    We know that, \(\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+C\) where \(C\) is constant.

    \(I=\int \frac{d x}{\sec ^{2}\left(\tan ^{-1} x\right)}\)

    \(=\tan ^{-1} x+C\)

  • Question 7
    4 / -1

    In the given figure, O is the center of the circle, \(\mathrm{AM}=\mathrm{PQ}\) and \(\angle \mathrm{POQ}=45^{\circ}\). The measure of \(\angle \mathrm{AOM}\) is:

    Solution

    Given,

    \(\angle POQ=45^{\circ}\), AM=PQ

    In \(\triangle AOM\) and \(\triangle POQ\) OA, OM and OP, OQ are radius of circle.

    \(\therefore~ \)\(\triangle AOM\) and \(\triangle POQ\) are Congruent triangles

    Since, two Congruent triangles have all three sides and angles equal in measurement, we conclude that \(\angle AOM=45^{\circ}\)

  • Question 8
    4 / -1

    There is a quadratic equation 5x210x+p=0. The product of roots of this equation is 4 times of sum of the roots. What is the value of p?

    Solution

    Given-

    5x210x+p=0

    On comparing it withax2+bx+c=0, we get-

    a=5

    b=-10

    c=p

    Sum of roots (s)=-ba

    =105

    =2

    Product of roots (p)=ca

    =p5

    According to the question,

    The product of roots of this equation is 4 times of sum of the roots.

    p5=4×2

    p=40

  • Question 9
    4 / -1

    If \(\sec \theta-\tan \theta=k\), then the value of \(\sec \theta+\tan \theta\) is:

    Solution

    \(\sec \theta-\tan \theta=k\)

    \(\frac{1}{\cos \theta}-\frac{\sin \theta }{ \cos \theta}=k\)

    \(\frac{(1-\sin \theta)}{ \cos \theta}=\mathrm{k}\)

    Squaring both sides, we get

    \((\frac{(1-\sin \theta)}{ \cos \theta})^2=(\mathrm{k})^2\)

    \(\Rightarrow \frac{(1-\sin \theta)^2 }{ \cos ^2 \theta}=\mathrm{k}^2\)

    \(=\frac{(1-\sin \theta)^2 }{\left(1-\sin ^2 \theta\right)}=\mathrm{k}^2\)

    \(\Rightarrow \frac{(1-\sin \theta)^2 }{(1+\sin \theta)(1-\sin \theta)}=k^2\)

    \(=\frac{(1-\sin \theta)}{(1+\sin \theta)}=\mathrm{k}^2\)

    \(\Rightarrow\frac{(1+\sin \theta) }{(1-\sin \theta)}=\frac{1 }{k^2}\)

    \(\Rightarrow \sqrt{\frac{(1+\sin \theta)}{1-\sin \theta}}=\frac{1 }{ \mathrm{k}}\)

    Multiplying and dividing by \((1+\sin \theta)\)

    \(=\sqrt{\frac{(1+\sin \theta)^2}{1-\sin ^2 \theta}}=\frac{1 }{ \mathrm{k} }\)

    \(\Rightarrow \sqrt{\frac{(1+\sin \theta)^2}{\cos ^2 \theta}}=\frac{1 }{ \mathrm{k}}\)

    \(\frac{(1+\sin \theta) }{\cos \theta}=\frac{1 }{\mathrm{k} }\)

    \(=\frac{1}{\cos \theta}+\frac{\sin \theta }{\cos \theta}=\frac{1 }{ \mathrm{k}} \)

    \(\Rightarrow \sec \theta+\tan \theta=\frac{1 }{ \mathrm{k}}\)

  • Question 10
    4 / -1

    Out of 6 teachers and 8 students a committee of 11 is to be formed. In how many ways can this be done such that the committee has exactly 4 teachers?

    Solution

    Given: There are 6 teachers and 8 students out of which we need to form a committee of 11 members such that the committee has exactly 4 teachers in it.

    If out 11 members of committee 4 are teachers then 7 members are students.

    So, the committee compromises of 4 teachers and 7 students.

    No. of ways in which 4 teachers can be selected from 6 teachers \(={ }^{6} C_{4}\)

    No. of ways in which 7 students can be selected from 8 students \(={ }^{8} C_{7}\)

    So, the number of ways in which the committee can be formed \(={ }^{6} C_{4} \times{ }^{8} C_{7}\)

    As we know that, \({ }^{n} C_{r}=\frac{n !}{r ! \times(n-r) !}\)

    \(\Rightarrow{ }^{6} C_{4} \times{ }^{8} C_{7}\)

    \(=\left(\frac{6 !}{(6-4) ! 4 !} \times \frac{8 !}{(8-7) ! 7 !}\right)\)

    \(=\left(\frac{6 !}{(2) ! 4 !} \times \frac{8 !}{(1) ! 7 !}\right)\)

    \(=120\)

    So, the committee can be formed in 120 ways.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now