Self Studies

Mathematics Test-10

Result Self Studies

Mathematics Test-10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    What is the seventh term of sequence 0, 3, 8, 15, 24, _____?

    Solution

    Given sequence:

    0, 3, 8, 15, 24....

    Here, difference between terms is 3, 5, 7, 9, 11 ... difference between these terms is constant (i.e., 2)

    So, sixth term = 24 + (9 + 2) = 35

    And seventh term = 35 + (11 + 2) = 48

  • Question 2
    4 / -1

    If \(\omega\) is the cube root of unity, then what is the value of:

    \(\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|\)

    Solution

    If the \(1, \omega\) and \(\omega^{2}\) are the cube roots of unity, then \(1+\omega+\omega^{2}=0\)

    If any row and column have all the elements as zero in the square matrix, then the determinant is zero.

    \(\mathrm{D}=\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|\)

    \(\mathrm{R}_{3}=\mathrm{R}_{3}+\mathrm{R}_{1}+\mathrm{R}_{2}\)

    \(\mathrm{D}=\left|\begin{array}{ccc}1 & \omega & 1+\omega+\omega^{2} \\ \omega & \omega^{2} & 1+\omega+\omega^{2} \\ \omega^{2} & 1 & 1+\omega+\omega^{2}\end{array}\right|\)

    \(\mathrm{D}=\left|\begin{array}{ccc}1 & \omega & 0 \\ \omega & \omega^{2} & 0 \\ \omega^{2} & 1 & 0\end{array}\right|=0\)

  • Question 3
    4 / -1

    If the roots of the quadratic equation \(x^{2}-4 x-\log _{10} N=0\) are real, then what is the minimum value of \(\mathrm{N}\) ?

    Solution

    The quadratic equation \(x^{2}-4 x-\log _{10} N=0\)

    As we know, The quadratic equation \(a x^{2}+b x+c=0\)

    For minimum value of \(b^{2}-4 a c \geq 0\)

    If \(\log _{a} b=c\) Then \(b=a^{c}\)

    Now, The quadratic equation \(x^{2}-4 x-\log _{10} N=0\)

    Compare the above equation \(a x^{2}+b x+c=0\)

    Then \(a=1, b=-4\) and \(c=-\log _{10} N\)

    Putting the value of \(b^{2}-4 a c \geq 0\)

    \(\Rightarrow(-4)^{2}-4 \cdot 1 \cdot\left(-\log _{10} \mathrm{~N}\right) \geq 0 \)

    \(\Rightarrow 16=-4 \cdot \log _{10} \mathrm{~N} \)

    \(\Rightarrow \log _{10} \mathrm{~N}=-4 \)

    \(\Rightarrow \mathrm{N}=(10)^{-4}\)

    \(\Rightarrow N=\frac{1}{10000} \)

  • Question 4
    4 / -1

    A card is drawn from a well shuffled deck of \(52\) cards. Find the probability of getting a king of red suit.

    Solution

    There are total \(4\) kings in \(52\) cards, \(2\) of red colour and \(2\) of black colour.

    Probability \(= \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}\)

    Therefore, Probability of getting a king of red suit is:

    \(P(\)King of red suit\()=\frac{2}{52}\)

    \(\Rightarrow {P} (\)King of red suit\()=\frac{1}{26}\)

  • Question 5
    4 / -1

    The equations x = a cos θ - b sin θ , and y = a sin θ + b cos θ, 0 ≤ θ ≤ 2π represent:

    Solution

    As we know,

    The general equation of a non-degenerate conic section is \(ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0\) where \(a, h\) and \(b\) are all not zero

    The above-given equation represents a non-degenerate conics whose nature is given below in the table:

    S.No

    Condition

    Nature of Conic

    1

    h = 0 and a = b

    Circle

    2

    h = 0 and Either a = 0 or b = 0

    Parabola

    3

    h = 0, a≠ b and ab > 0

    Ellipse

    4

    h = 0, a≠ b and sign of a and b are opposite

    Hyperbola

    Given,

    \(x=a \cos \theta-b \sin \theta \)...(i)

    \(y=a \sin \theta+b \cos \theta\)...(ii)

    Squaring both sides of (i) and (ii) and adding both the equation we get,

    \(x^{2}+y^{2}=a^{2}+b^{2}\)

    By comparing the given equation with \(a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0\), we get

    \( a =1, h =0, b =1\)

    As we can see that \(h =0, a = b\)

    So, the equation represents the locus of the circle.

  • Question 6
    4 / -1

    If \(\int \frac{(x-1)^{2}}{\left(x^{2}+1\right)^{2}} d x=\tan ^{-1} x+g(x)+\mathrm{k}\), then \(g(x):\)

    Solution

    Given:

    \(\int \frac{(x-1)^{2}}{\left(x^{2}+1\right)^{2}} d x=\tan ^{-1} x+g(x)+\mathrm{k}\)

    \(g(x)=?\)

    \(C\) is the arbitrary constant or constant of integration.

    \(\int \frac{(x-1)^{2}}{\left(x^{2}+1\right)^{2}} d x\)

    \(\Rightarrow \int \frac{x^{2}+1}{(x^{2}+1)^{2}}-\frac{2 x}{\left(x^{2}+1\right)^{2}} d x\)

    \(\Rightarrow \int \frac{1}{x^{2}+1}-\frac{2 x}{\left(x^{2}+1\right)^{2}} d x\).......(i)

    Let \(x^{2}+1=t\)

    \(\Rightarrow 2 {x} \cdot {d} {x}={dt}\)

    \(\because\int \frac{1}{x^{2}+1}=\tan ^{-1} x+C\)

    By putting the above values in equation (i)

    \(\Rightarrow \tan ^{-1} x-\int \frac{d t}{t^{2}}+\mathrm{k} \quad\) (where \(\mathrm{k}\) is an arbitrary constant)

    \(\Rightarrow \tan ^{-1} x+\frac{1}{t}+\mathrm{k}\)

    \(\Rightarrow \tan ^{-1} x+\frac{1}{x^{2}+1}+\mathrm{k}\)

    On comparing it with the given condition i.e.,

    \(\int \frac{(x-1)^{2}}{\left(x^{2}+1\right)^{2}} d x=\tan ^{-1} x+g(x)+\mathrm{k}\),

    \(\Rightarrow g(x)=\frac{1}{\left(x^{2}+1\right)}\)

  • Question 7
    4 / -1

    If \(x^{m} y^{n}=a^{m+n},\) then what is \(\frac{d y}{d x}\) equal to?

    Solution

    Given: \(\mathrm{x}^{\mathrm{m}} \mathrm{y}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}+\mathrm{n}}\)

    Differentiating with respect to \(\mathrm{x},\) we get

    \(\Rightarrow x^{\mathrm{m}} \frac{\mathrm{dy}^{\mathrm{n}}}{\mathrm{dx}}+\mathrm{y}^{\mathrm{n}} \frac{\mathrm{d} \mathrm{x}^{\mathrm{m}}}{\mathrm{dx}}=\frac{\mathrm{da}^{\mathrm{m}+\mathrm{n}}}{\mathrm{dx}}\)

    \(\Rightarrow x^{\mathrm{m}} \times \mathrm{ny}^{\mathrm{n}-1} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y}^{\mathrm{n}} \times \mathrm{mx}^{\mathrm{m}-1}=0\)

    \(\Rightarrow x^{\mathrm{m}} \times \mathrm{ny}^{\mathrm{n}-1} \frac{\mathrm{dy}}{\mathrm{dx}}=-\mathrm{y}^{\mathrm{n}} \times \mathrm{m} \mathrm{x}^{\mathrm{m}-1}\)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{y}^{\mathrm{n}} \times \mathrm{m} \mathrm{x}^{\mathrm{m}-1}}{\mathrm{x}^{\mathrm{m}} \times \mathrm{x} \mathrm{y}^{-1}-1}\)

    \(\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{my}}{\mathrm{nx}}\)

  • Question 8
    4 / -1

    What is the number of ways that a cricket team of 11 players can be made out of 15 players?

    Solution

    Combination is the number of ways in which we can select a group of objects from a set.

    For example, selecting \(r\) things from a set of \(n\) things is given as \({ }^{ n } C _{ r }\).

    \({ }^{ n } C _{ T }=\frac{n !}{(n-r) ! r !}\)

    We have to select 11 players from a total of 15 players.

    So, the number of ways \(={ }^{15} C _{11}\)

    \(\Rightarrow \frac{15 !}{(15-11) ! 11 !}\)

    \(\Rightarrow\frac{15 \times 14 \times 13 \times 12 \times 11 !}{4 \times 3 \times 2 \times 1 \times 11 !}\)

    \(\Rightarrow\frac{15 \times 14 \times 13}{2}\)

    \(\Rightarrow1365\)

  • Question 9
    4 / -1

    Direction: In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answer.

    I. x2 = 841

    II. y2 – 15y – 76 = 0

    Solution

    I. x2 = 841

    ⇒ x = +29, -29

    II. y2 – 15y – 76 = 0

    ⇒ y2 + 4y – 19y – 76 = 0

    ⇒ (y – 19)(y + 4)

    So, y = 19, y = -4

    Comparison between x and y (via tabulation):

    Value of x

    Value of y

    Relation

    29

    19

    x >y

    29

    -4

    x > y

    -29

    19

    x < y

    -29

    -4

    x < y

    ∴ Relationship between x and y cannot be established.

  • Question 10
    4 / -1

    \(PA\) and \(PB\) are two tangents from a point \(P\) outside the circle with center \(O\) at the point \(A\) and \(B\) on it. If \(\angle APB =130^{\circ}\), then \(\angle OAB\) is equal to:

    Solution

    Given,

    \(\angle APB =130^{\circ}\)

    As we know,

    Sum of angles of quadrilateral \(=360^{\circ}\)

    Sum of angles of triangle \(=180^{\circ}\)

    Radius of a circle always perpendicular to the tangent of the circle

    In a triangle opposite angle of two equal side always equal

    \(\angle OAP =\angle OBP =90^{\circ} \quad \cdots\) (Radius of a circle always perpendicular to the tangent of the circle)

    Now consider \(\square\) \(OAPB\),

    \(\angle OAP +\angle APB +\angle PBO +\angle BOA =360^{\circ}\)

    \(\Rightarrow 90^{\circ}+130^{\circ}+90^{\circ}+\angle BOA =360^{\circ}\)

    \(\Rightarrow 310^{\circ}+\angle BOA =360^{\circ}\)

    \(\Rightarrow \angle BOA =50^{\circ}\)

    In \(\triangle OAB\)

    \(OA = OB\) (Radius of the circle)

    So, \(\angle OAB =\angle OBA \quad \) ....... (In a triangle opposite angle of two equal side always equal )

    \(\angle OAB +\angle ABO +\angle BOA =180^{\circ}\)

    \(\Rightarrow 2 \angle OAB +50^{\circ}=180^{\circ}\)

    \(\Rightarrow 2 \angle OAB =130^{\circ}\)

    \(\Rightarrow \angle OAB =65^{\circ}\)

    \(\therefore\) The value of \(\angle OAB\) is \(65^{\circ}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now